Chinese Optics Letters, 2019, 17 (6): 060201, Published Online: Jun. 12, 2019   

Cesium atomic Doppler broadening thermometry for room temperature measurement Download: 859次

Author Affiliations
1 Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
2 College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
3 School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
Abstract
Atomic Doppler broadening thermometry (DBT) is potentially an accurate and practical approach for thermodynamic temperature measurement. However, previous reported atomic DBT had a long acquisition time and had only been proved at the triple point of water, 0°C, for the purpose of determination of the Boltzmann constant. This research implemented the cesium atomic DBT for fast room temperature measurement. The Cs133 D1 (6S1/2 → 6p1/2 transition) line was measured by direct laser absorption spectroscopy, and the quantity of thermal-induced linewidth broadening was precisely retrieved by the Voigt profile fitting algorithm. The preliminary results showed the proposed approach had a 4 min single-scan acquisition time and 0.2% reproducibility. It is expected that the atomic DBT could be used as an accurate, chip-scale, and calibration-free temperature sensor and standard.

Yijie Pan, Wenhan Liao, He Wang, Yan Yao, Jinhui Cai, Jifeng Qu. Cesium atomic Doppler broadening thermometry for room temperature measurement[J]. Chinese Optics Letters, 2019, 17(6): 060201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!