Photonics Research, 2020, 8 (7): 07001203, Published Online: Jun. 29, 2020   

Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser Download: 670次

Author Affiliations
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
2 Department of Electronic Engineering, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
3 Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, China
4 e-mail: ffpang@shu.edu.cn
Abstract
Temporal and spatial resonant modes are always possessed in physical systems with energy oscillation. In ultrafast fiber lasers, enormous progress has been made toward controlling the interactions of many longitudinal modes, which results in temporally mode-locked pulses. Recently, optical vortex beams have been extensively investigated due to their quantized orbital angular momentum, spatially donut-like intensity, and spiral phase front. In this paper, we have demonstrated the first to our knowledge observation of optical vortex mode switching and their corresponding pulse evolution dynamics in a narrow-linewidth mode-locked fiber laser. The spatial mode switching is achieved by incorporating a dual-resonant acousto-optic mode converter in the vortex mode-locked fiber laser. The vortex mode-switching dynamics have four stages, including quiet-down, relaxation oscillation, quasi mode-locking, and energy recovery prior to the stable mode-locking of another vortex mode. The evolution dynamics of the wavelength shifting during the switching process are observed via the time-stretch dispersion Fourier transform method. The spatial mode competition through optical nonlinearity induces energy fluctuation on the time scale of ultrashort pulses, which plays an essential role in the mode-switching dynamic process. The results have great implications in the study of spatial mode-locking mechanisms and ultrashort laser applications.

Jiafeng Lu, Fan Shi, Linghao Meng, Longkun Zhang, Linping Teng, Zhengqian Luo, Peiguang Yan, Fufei Pang, Xianglong Zeng. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 2020, 8(7): 07001203.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!