首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0232001--1)

高功率超短脉冲系统等离子体镜的焦斑退化分析

Focal Spot Deterioration Analysis of Plasma Mirrors in High-Power Ultrashort Laser Systems

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

等离子体镜是一种有效提升高功率超短脉冲激光信噪比的方法,但在一部分实验中使用等离子体镜后焦斑出现了退化现象。为了定量研究等离子体镜的焦斑退化问题,提出基于等离子体膨胀和衍射传输的时空聚焦多步传输算法,通过光束质量评价函数定量分析等离子体膨胀时间、波前误差幅值和空间频率对焦斑退化的影响。仿真结果表明,等离子体镜引起的远场焦斑退化主要是由等离子体膨胀时间和波前误差引起的等离子体膨胀不均匀所致,其中,等离子体膨胀时间是主导因素。并且波前误差的幅度越大、空间频率越低,对聚焦能力的影响相对越大。从高信噪比、高功率激光系统输出能力的角度考虑,对于使用等离子体镜的高功率超短脉冲激光系统提出时空上的光束质量要求,以避免远场焦斑的退化问题。

Abstract

Plasma mirrors can be effectively used to improve the signal-to-noise ratio (SNR) of high-power ultrashort laser; however, some experiments conducted using plasma mirrors denote that plasma mirrors may cause focal spot deterioration. Herein, we establish a spatiotemporal focusing multistep propagation algorithm based on plasma expansion and diffraction propagation to quantitatively investigate the plasma-mirror-induced focal spot deterioration. Further, the influences of the plasma expansion time as well as the amplitude and spatial frequency of wavefront error on focal spot deterioration are quantitatively analyzed using a beam quality evaluation function. The simulation results reveal that the plasma-mirror-induced far-field focal spot deterioration can be mainly attributed to the non-uniform plasma expansion based on the plasma expansion time and wavefront error, with the plasma expansion time observed to be the dominant factor. Additionally, higher-amplitude and lower-spatial-frequency wavefront errors have a relatively greater influence on the focusing ability. From the perspective of high SNR ultraintense output capability, the spatiotemporal quality requirement of the pulse is introduced to avoid far-field focal spot deterioration when a plasma mirror is used in a high-power ultrashort laser system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/AOS202040.0232001

所属栏目:超快光学

基金项目:中国科学院重点实验室创新基金、上海市青年科技英才扬帆计划;

收稿日期:2019-07-08

修改稿日期:2019-09-09

网络出版日期:2020-02-01

作者单位    点击查看

张栋俊:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
朱坪:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
谢兴龙:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
康俊:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
杨庆伟:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱海东:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
郭爱林:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
孙美智:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
高奇:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:朱坪(zhp1990@siom.ac.cn); 谢兴龙();

备注:中国科学院重点实验室创新基金、上海市青年科技英才扬帆计划;

【1】Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications. 1985, 55(6): 447-449.

【2】Zhu J Q, Chen S H, Zheng Y X, et al. Review on development of Shenguang-Ⅱ laser facility [J]. Chinese Journal of Lasers. 2019, 46(1): 0100002.
朱健强, 陈绍和, 郑玉霞, 等. 神光Ⅱ激光装置研制 [J]. 中国激光. 2019, 46(1): 0100002.

【3】Luo S Z, Chen Z, Li X K, et al. Controlling quantum states of atoms and molecules by ultrafast femtosecond laser fields [J]. Acta Optica Sinica. 2019, 39(1): 0126007.
罗嗣佐, 陈洲, 李孝开, 等. 超快飞秒激光场中原子分子量子态调控 [J]. 光学学报. 2019, 39(1): 0126007.

【4】Leng Y X. Shanghai superintense ultrafast laser facility [J]. Chinese Journal of Lasers. 2019, 46(1): 0100001.
冷雨欣. 上海超强超短激光实验装置 [J]. 中国激光. 2019, 46(1): 0100001.

【5】Kalashnikov M P, Risse E, Sch?nnagel H, et al. Double chirped-pulse-amplification laser: a way to clean pulses temporally [J]. Optics Letters. 2005, 30(8): 923-925.

【6】Xu Y, Leng Y X, Guo X Y, et al. Pulse temporal quality improvement in a petawatt Ti∶sapphire laser based on cross-polarized wave generation [J]. Optics Communications. 2014, 313: 175-179.

【7】Liu J, Okamura K, Kida Y, et al. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium [J]. Optics Express. 2010, 18(21): 22245-22254.

【8】Gold D M. Direct measurement of prepulse suppression by use of a plasma shutter [J]. Optics Letters. 1994, 19(23): 2006-2008.

【9】Ge X L, Fang Y, Yang S, et al. Characterization and application of plasma mirror for ultra-intense femtosecond lasers [J]. Chinese Optics Letters. 2018, 16(1): 013201.

【10】Scott G, Bagnoud V, Brabetz C, et al. Optimization of plasma mirror reflectivity and optical quality using double laser pulses [J]. New Journal of Physics. 2015, 17(3): 033027.

【11】Kim I, Choi I W, Lee S K, et al. Spatio-temporal characterization of double plasma mirror for ultrahigh contrast and stable laser pulse [J]. Applied Physics B. 2011, 104(1): 81-86.

【12】Dromey B, Kar S, Zepf M, et al. The plasma mirror: a subpicosecond optical switch for ultrahigh power lasers [J]. Review of Scientific Instruments. 2004, 75(3): 645-649.

【13】Inoue S, Maeda K, Tokita S, et al. Single plasma mirror providing 10 4 contrast enhancement and 70% reflectivity for intense femtosecond lasers [J]. Applied Optics. 2016, 55(21): 5647-5651.

【14】Lévy A, Ceccotti T. D''''Oliveira P, et al. Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses [J]. Optics Letters. 2007, 32(3): 310-312.

【15】Doumy G, Quéré F, Gobert O, et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses [J]. Physical Review E. 2004, 69(2): 026402.

【16】Ziener C, Foster P S, Divall E J, et al. Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence [J]. Journal of Applied Physics. 2003, 93(1): 768-770.

【17】R?del C, Heyer M, Behmke M, et al. High repetition rate plasma mirror for temporal contrast enhancement of terawatt femtosecond laser pulses by three orders of magnitude [J]. Applied Physics B. 2011, 103(2): 295-302.

【18】Yang M X, Zhong M, Ren G, et al. Discussion of short-wavelength laser beam focus using fast Fourier transform method [J]. Acta Optica Sinica. 2011, 31(5): 0507001.
杨美霞, 钟鸣, 任钢, 等. 快速傅里叶变换方法计算短波长激光束聚焦的讨论 [J]. 光学学报. 2011, 31(5): 0507001.

【19】Voelz D G, Roggemann M C. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences [J]. Applied Optics. 2009, 48(32): 6132-6142.

【20】Zhu P, Xie X L, Jiao Z Y, et al. Influence of wave-front error on temporal signal-to-noise ratio in large aperture ultrashort pulse focusing system [J]. Acta Optica Sinica. 2014, 34(10): 1032001.
朱坪, 谢兴龙, 焦兆阳, 等. 大口径超短脉冲聚焦系统波前误差对时间信噪比的影响 [J]. 光学学报. 2014, 34(10): 1032001.

【21】Chen Y H, Zheng W G, Chen W J, et al. Phase RMS gradient of the distorted wavefront for high power optical components [J]. High Power Laser & Particle Beams. 2005, 17(3): 403-408.
陈源画, 郑万国, 陈文静, 等. 高功率光学元件畸变波前位相均方根梯度计算 [J]. 强激光与粒子束. 2005, 17(3): 403-408.

【22】Mahajan V N. Strehl ratio for primary aberrations: some analytical results for circular and annular pupils [J]. Journal of the Optical Society of America. 1982, 72(9): 1258-1266.

【23】Liu L, Wang C, Wang W T, et al. Evaluation on laser beam quality and its application on high power slab laser [J]. Acta Optica Sinica. 2013, 33(s1): s114006.
刘磊, 王超, 王文涛, 等. 光束质量评价及其在高功率板条激光器中的应用 [J]. 光学学报. 2013, 33(s1): s114006.

【24】Morace A, Kojima S, Arikawa Y, et al. Plasma mirror implementation on LFEX laser for ion and fast electron fast ignition [J]. Nuclear Fusion. 2017, 57(12): 126018.

【25】Arikawa Y, Kojima S, Morace A, et al. Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror [J]. Applied Optics. 2016, 55(25): 6850-6857.

【26】Heinrich H. Plasma mirror for high contrast picosecond laser pulses for fast ignition fusion [J]. Journal of Physics: Conference Series. 2008, 112(2): 022028.

引用该论文

Zhang Dongjun,Zhu Ping,Xie Xinglong,Kang Jun,Yang Qingwei,Zhu Haidong,Guo Ailin,Sun Meizhi,Gao Qi,Zhu Jianqiang. Focal Spot Deterioration Analysis of Plasma Mirrors in High-Power Ultrashort Laser Systems[J]. Acta Optica Sinica, 2020, 40(2): 0232001

张栋俊,朱坪,谢兴龙,康俊,杨庆伟,朱海东,郭爱林,孙美智,高奇,朱健强. 高功率超短脉冲系统等离子体镜的焦斑退化分析[J]. 光学学报, 2020, 40(2): 0232001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF