Photonics Research, 2020, 8 (4): 04000595, Published Online: Mar. 31, 2020   

Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers Download: 731次

Author Affiliations
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
2 Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
3 National Key Laboratory of Science and Technology on Blind Signal Processing, Chengdu 610000, China
Abstract
The experimental investigation of mode distortion induced by stimulated Raman scattering (SRS) in a high-power fiber amplifier, which includes the evolutions of optical spectra, spatial beam profiles, and time-frequency characteristics, has been carried out in detail. Temporal-frequency characteristics have been studied for the first time, to the best of our knowledge, by using a low-speed camera and high-speed photodiode traces, which revealed that temporal-frequency characteristics of SRS-induced mode distortion are different from traditional dynamic mode instability (MI). The experimental results show that the output beam profile remains stable before the mode distortion occurs and fluctuates obviously after the onset of SRS-induced MI but on a time scale of seconds, which is much lower than that of Yb-gain-induced MI featuring millisecond-level beam profile fluctuation. It also shows that the mode distortion became measurable in company with the onset of inter-mode four-wave mixing (IM-FWM) when the ratio of Raman light reaches 3%; further, the beam quality factor M2 degrades gradually from 1.4 to 2.1 as the ratio of Raman light increases. The mode distortion is accompanied by an obvious temperature increase of the output passive fiber, which further confirms that the mode distortion originates from SRS. The cause of the mode distortion induced by SRS has been explained in the context of core-pumped SRS effect, and the investigation on the accompanying IM-FWM effect indicates that the main content of the SRS-induced high-order mode is the LP21 mode.

Qiuhui Chu, Qiang Shu, Zeng Chen, Fengyun Li, Donglin Yan, Chao Guo, Honghuan Lin, Jianjun Wang, Feng Jing, Chuanxiang Tang, Rumao Tao. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 2020, 8(4): 04000595.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!