Advanced Photonics, 2020, 2 (4): 046001, Published Online: Jun. 28, 2020  

Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides Download: 735次

Author Affiliations
1 Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
2 Zhejiang University, Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
Abstract
Dispersion engineering of optical waveguides is among the most important steps in enabling the realization of Kerr optical frequency combs. A recurring problem is the limited bandwidth in which the nonlinear phase matching condition is satisfied, due to the dispersion of the waveguide. This limitation is particularly stringent in high-index-contrast technologies such as silicon-on-insulator. We propose a general approach to stretch the bandwidth of Kerr frequency combs based on subwavelength engineering of single-mode waveguides with self-adaptive boundaries. The wideband flattened dispersion operation comes from the particular property of the waveguide optical mode that automatically self-adapts its spatial profile at different wavelengths to slightly different effective spatial spans determined by its effective index values. This flattened dispersion relies on the squeezing of small normal-dispersion regions between two anomalous spectral zones, which enables it to achieve two Cherenkov radiation points and substantially broaden the comb, achieving a bandwidth between 2.2 and 3.4 μm wavelength. This strategy opens up a design space for trimming the spectra of Kerr frequency combs using high-index-contrast platforms and can provide benefits to various nonlinear applications in which the manipulation of energy spacing and phase matching are pivotal.

Jianhao Zhang, Vincent Pelgrin, Carlos Alonso-Ramos, Laurent Vivien, Sailing He, Eric Cassan. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides[J]. Advanced Photonics, 2020, 2(4): 046001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!