首页 > 期刊 > 栏目列表 > 栏目 (图像处理)

摘要

针对目标检测与图像分类任务的差别,以及大多数目标检测器过于依赖分类基础网络的问题,提出一种针对目标检测任务的基础网络。该网络包含初始模块、特征融合模块和混合下采样模块。初始模块能减少输入图片信息的丢失;特征融合模块通过拼接不同卷积层的输出,既能加强网络对不同尺寸目标检测的稳健性,又能对物体检测提供更多的上下文信息,有效提高了检测精确度;在网络的下采样部分引入混合下采样模块,平衡了基础网

PDF全文 激光与光电子学进展 | 2020,57(04):041021
分享:

摘要

针对当前图像显著性检测算法存在的边缘检测不清晰和内部不均匀的问题,提出一种基于无向权重图和多特征传播的图像显著性检测方法。首先以超像素为节点构建无向图,并改进边界超像素的连接方式。在改进图的基础上利用图像颜色、纹理特征与局部对比和中心先验等多种先验知识提取高层特征,并得到基于底层特征的显著图。其次,利用高层特征和显著物体的紧凑性分别计算基于前景和背景种子的显著图并将其融合。最后,将

PDF全文 激光与光电子学进展 | 2020,57(04):041020
分享:

摘要

针对随机散斑图的非正交性所导致的计算鬼成像信噪比低的问题,提出一种基于正交化正弦散斑的计算鬼成像方法。该方法结合矩阵正交特性,将正交的两种倾斜正弦分布图案叠加,以调整频率上限的方式构建出正交化正弦散斑场,并对未知目标进行成像。数值仿真及实验结果表明,与基于高斯散斑图的计算鬼成像相比,本文方法重建的鬼像质量明显提高,其中峰值信噪比增加了4 dB~7 dB,且结构相似性提高了280%。

PDF全文 激光与光电子学进展 | 2020,57(04):041019
分享:

摘要

传统图像分割方法主要依赖图像光谱、纹理等底层特征,容易受到图像中遮挡和阴影等的干扰。为此,提出一种基于卷积受限玻尔兹曼机的CV(Chan-Vest)图像分割模型,采用生成式模型——卷积受限玻尔兹曼机对目标形状建模并生成目标形状,以此为先验信息对CV模型能量函数增加目标全局形状特征约束,指导图像分割。在训练数据有限、目标形态各异、目标尺度变化较大的遥感影像数据集Satellite-2000和Vaihigen的目标分割中取

PDF全文 激光与光电子学进展 | 2020,57(04):041018
分享:

摘要

现有基础矩阵鲁棒估计方法存在精度不高、准确性较低等不足,基于此,提出一种利用多核学习改进密度峰值聚类的基础矩阵估计方法。首先,针对密度峰值算法需要选取参数和无法自动聚类等不足,引入多核学习和γ分布图进行改进;其次,以对极距离为特征,通过多核学习-密度峰值算法剔除匹配数据集中的异常值,得到较优内点集;最后,使用M估计法消除定位噪声误差,对内点子集进行进一步优化处理,并估计最终的基础矩阵。利用IN

PDF全文 激光与光电子学进展 | 2020,57(04):041017
分享:

摘要

为了提高复杂背景植物图像识别准确率,提出一种基于卷积神经网络(CNN)有效区域筛选的植物图像识别方法,该方法首先基于图像(花朵、叶片)数据集利用CNN训练一个有效区域筛选模型,使数据集通过该模型筛选后仍能保留花朵、叶片等有效区域;然后经过Mask R-CNN对植物图像数据集进行有效区域的提取,再用有效区域筛选模型筛选能表征植物图像类别的有效区域,接着将此类有效区域以4∶1的比例划分为训练集和测试集,然后送

PDF全文 激光与光电子学进展 | 2020,57(04):041016
分享:

摘要

针对遥感图像目标密集、尺度不一、存在遮挡等特点,提出一种基于注意力机制的遥感图像分割模型用于目标分割。该模型建立在深度图像分割模型的基础上,提出在高低层特征融合之前采用通道注意力机制对低层特征进行加权处理,增强目标特征并抑制背景特征,提高信息的融合效率。为进一步增强模型对目标特征的响应能力,提出位置注意力机制对解码阶段最后的特征进行处理。最后,将加权融合后的特征图上采样到原图大小并预

PDF全文 激光与光电子学进展 | 2020,57(04):041015
分享:

摘要

为了解决基于深度学习的网格分割方法在训练分割分类器过程中时间消耗大的问题,提出了一种基于蚁狮优化的极限学习机的网格分割方法。利用蚁狮优化算法中蚂蚁种群受精英蚁狮与轮盘赌策略的双重影响,迭代更新蚂蚁种群,将蚁狮种群与蚂蚁种群进行降序全排列,取最优的N个更新蚁狮种群,采用最优蚁狮更新精英蚁狮,保持精英蚁狮为最优解,从而优化极限学习机随机生成的输入权值矩阵与隐层偏置。采用改进的极限学习机方法

PDF全文 激光与光电子学进展 | 2020,57(04):041014
分享:

摘要

在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节像素点的问题。在模型的输入上,通过调整三维卷积神经网络的输入,实现了卷积神经网络对样本图片的32×32×32像素逐步扫描和识别,在扫描识别的同时进行定位,解决了肺结节定位问题。

PDF全文 激光与光电子学进展 | 2020,57(04):041013
分享:

摘要

针对深度卷积网络在遥感图像上存在小目标漏分、被遮挡目标无法提取、细节缺失等问题,在深度卷积编码-解码网络的基础上提出一种基于多级通道注意力的遥感图像分割方法(SISM-MLCA)。首先在网络编码阶段加入通道注意力机制,通过自我学习的方式获取更为有效的特征,解决遥感图像中目标遮挡问题;其次,在不同尺度上施加通道注意力的特征图融合,使网络提取到丰富的上下文信息,能应对目标尺度的变化,改善小目标难分割的

PDF全文 激光与光电子学进展 | 2020,57(04):041012
分享:
首页上一页12345678910下一页尾页