科技动态

兰州化物所半导体阵列光生载流子定向迁移研究获系列进展

发布:tatafan阅读:1362时间:2015-5-5 21:53:46
      在中国科学院“人才”项目和国家自然科学基金支持下,中国科学院兰州化学物理研究所研究员毕迎普带领的能源与环境纳米催化材料组在半导体纳米阵列晶面间光生载流子定向迁移及选择性沉积纳米金属研究领域取得系列进展。

      利用贵金属修饰半导体纳米阵列可有效提高其可见光吸收,增强光生电子-空穴分离效率,从而增强光催化及光电催化性能。然而,目前所报道的此类材料大都存在金属纳米颗粒在半导体阵列表面无序随机沉积。因而,如何实现金属在半导体纳米阵列不同晶面可控构建从而调控其可见光吸收及电子-空穴分离效率成为目前研究重点。 

      该课题组研究发现,在受光激发时,光生载流子在ZnO纳米线阵列{0001}和{1101}晶面间定向迁移并分离,光生电子富集在ZnO纳米线顶端{0001}晶面,而空穴聚集在侧面{1101}晶面并产生较强的正电场。利用ZnO顶端{0001}晶面光生电子聚集作用,通过光还原沉积使金属Ag纳米颗粒均匀沉积在ZnO纳米线阵列顶端。这一独特的晶面选择性生长Ag纳米颗粒可进一步促进半导体内产生的空穴-电子分离和定向传输,从而增强光电化学性能。(Nanoscale, 2013, 5, 7552)。此外,利用ZnO纳米线阵列在光激发时光生电子-空穴在不同晶面间的空间分离所产生的正电场作用,使[AuCl4]-负配位离子在光生电场驱动下定向迁移,并在ZnO纳米线侧面还原沉积形成Au纳米线,最终相互连接形成三维网络结构。光电化学研究结果表明此三维网络结构金属纳米线/ZnO纳米线异质阵列表现出优异的光电转换性能(J. Mater. Chem. A, 2014, 2,15553)。

      最近,该团队研究发现通过施加偏压可进一步调整ZnO纳米线阵列间电场强度,从而改变AuCl4-离子在电场内定向迁移速度,实现在ZnO纳米线侧面生长Au纳米线数量及位置灵活调控。光电测试研究结果表明三维网状Au纳米线/ZnO纳米线异质阵列结构在一定组成时具有最佳光电转换性能。该研究结果可为微纳区域构建具有特定结构及功能的金属/半导体纳米器件提供一种简便可行的技术路线。相关研究成果发表在英国皇家化学会Chem Commun期刊 (Chem Commun, 2015, 51, 2103)。
 
ZnO纳米线阵列晶面间光生载流子定向迁移及Au纳米线生长示意图
 
电场诱导ZnO纳米线阵列生长Au纳米线示意图


来源:兰州化学物理研究所 
> 免责声明
网站内容来源于互联网、原创,由网络编辑负责审查,目的在于传递信息,提供专业服务,不代表本网站及新媒体平台赞同其观点和对其真实性负责。如对文、图等版权问题存在异议的,请于20个工作日内与我们取得联系,我们将协调给予处理(按照法规支付稿费或删除),联系方式:021-69918579。网站及新媒体平台将加强监控与审核,一旦发现违反规定的内容,按国家法规处理,处理时间不超过24小时。 最终解释权归《中国激光》杂志社所有。

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!