科技动态

理化所光催化分解纯水研究取得进展

发布:opticseditor阅读:534时间:2018-1-2 17:24:34

氢气是一种理想的能源载体,能量密度高,而且氢气燃烧不会对环境造成污染。利用太阳能光催化分解水制氢是解决人类能源问题的重要途径。CdS因其适合的能带位置以及带隙宽度,被广泛用作可见光光催化分解水材料。由于快速的光生载流子复合以及光腐蚀问题,CdS在进行光催化产氢过程中需要加入电子牺牲剂,例如甲醇、乳酸、三乙醇胺等。这些电子牺牲剂一方面可以消耗光生空穴,解决CdS的光腐蚀问题;另一方面可以抑制光生电子和空穴的复合,增加光生电子的寿命。但加入牺牲剂的光催化产氢反应并不是完全的“太阳能–化学能转换反应”,氢气的产生是以消耗电子牺牲剂的化学能为代价,因此只能称为“半太阳能–化学能转换反应”。

近日,中国科学院理化技术研究所光化学转换与合成研究中心金属有机光化学研究组在可见光催化分解纯水研究方面取得新进展。该团队首先在合成路线上对传统的水热法合成CdS进行改进,通过添加适量的还原剂水合肼对六方CdS进行轻度还原,获得富含硫空位缺陷的CdS;之后对其进行磷间隙掺杂,制备强n型半导体,促使费米能级位置与硫空位能级靠近,此时硫空位能级将显现出电子捕获陷阱的能力,像一座蓄水池一样对光生电子进行临时存储,从而延长光生电子寿命,长寿命的光生电子具有足够的动力学能力迁移到CdS表面,进一步发生质子还原反应。相关研究结果近日发表在Advanced Materials上。

研究工作得到中科院战略性先导科技专项()、科技部国家重点基础研究计划、国家自然科学基金委面上项目的支持。

论文链接


磷掺杂硫化镉能级变化示意图

来源:理化技术研究所

> 免责声明
网站内容来源于互联网、原创,由网络编辑负责审查,目的在于传递信息,提供专业服务,不代表本网站及新媒体平台赞同其观点和对其真实性负责。如对文、图等版权问题存在异议的,请于20个工作日内与我们取得联系,我们将协调给予处理(按照法规支付稿费或删除),联系方式:021-69918579。网站及新媒体平台将加强监控与审核,一旦发现违反规定的内容,按国家法规处理,处理时间不超过24小时。 最终解释权归《中国激光》杂志社所有。

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!