做科研，非一朝一夕
——买器材，应速战速决

Newport数千种优质产品当日发货，
更多惊喜尽在PhotonSpeed™光速购！
Surface Modification and Ablation of Polytetrafluoroethylene by Excimer Laser Irradiation

Liu Aihua, Zhang Yunhai, Man Baoyuan

(College of Physics and Electronics, Shandong Normal University, Jinan 250014)

Abstract. The surface of polytetrafluoroethylene (PTFE) is modified by the irradiation from a focused excimer laser with wavelength of 248 nm with different energy densities. Scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy are used to investigate the changes of the surface morphology, chemical composition and structure. The mechanism of interaction between laser and PTFE is further studied. The experimental results indicate that the component of fluorine reduces greatly after laser irradiation and there appear the carbonization of the surface, cross-linking and the formation of oxygen function group. When the laser energy density is increased, C – C bond is produced. These changes of structure can enhance the hardness and adhesion of the surface. The physical properties and chemical structure of the treated samples surface are influenced greatly by the laser energy density, which is an important factor in the process of laser modification and ablation.

Key words: interaction between laser and matter; laser surface modification; laser surface ablation; polytetrafluoroethylene

1 引言

在过去的二十年中，聚合物材料由于其良好的可塑性、密度小、耐腐蚀以及高的热和机械稳定性而被广泛地应用于医疗、生物医学、微电子工业、航空航天、建筑、家电、交通运输、精密机械等许多领域。但由于其硬度低、耐磨性差以及较差的表面粘结性等缺点极大地限制了其在实际技术领域的应用。近年来，许多研究者已经进行了其表面改性研究以增强表面的硬度和耐磨性，并获得好的表面粘结性[1-4]。其表面硬度可以远高于公认的最硬的马氏体钢，耐磨性明显优于滚珠轴承钢[5]，与其他材料之间的粘结力也得到极大的增强[6,7]。激光辐射技术作为一种绿色技术，克服了其他技术所带来的化学腐蚀、有害放射以及环境污染等因素而被广泛应用于金属、半导体等材料的处理。目前也有激光在聚合物材料表面改性上的应用[8-10]，但报道并不多。

聚四氟乙烯（PTFE）是一种含氟聚合物，具有塑料王的称号，是当今世界现代工业中许多关键技
术不可或缺的材料，因此本文选取聚四氟乙烯作为研究对象，用脉冲准分子激光束对聚四氟乙烯的表面进行了处理，用扫描电镜（SEM）、拉曼（Raman）光谱以及X射线光电子光谱（XPS）等分析手段对处理后的聚四氟乙烯表面的物理性质和化学结构进行测试和分析，获得的结果对于正确理解和掌握聚四氟乙烯表面激光改性的机理以及深入了解激光与聚合物相互作用机理具有重要的理论意义和实际应用价值。

2 实验方法及测试手段

实验装置如图1所示，实验所使用的激光器为LPS305F型准分子激光器，它的工作物质为KrF，波长248nm，脉宽30ns，最高单脉冲能量1200mJ，激光重复频率在1～50Hz之间。从激光器出来的光斑大小约为35mm×16mm。激光束经平面镜B、C及D改变光路后通过光阑E，然后经平面镜F再一次改变光路后经100倍的物镜G聚焦后直接照射于位于物镜焦点的样品I上。通过调节激光器的能量和脉冲数目进行多次重复实验。实验样品为厚度3mm、密度2.2g/cm³的聚四氟乙烯，被切割成20mm×10mm的片，经抛光后使用。

样品的表面形貌通过扫描电子显微镜（日立S-570）进行观察分析，样品的结构及表面特性用拉曼光谱和X射线光电子光谱进行观察和分析。X射线光电子光谱仪（VG Scientific SCAlab220i、XL）的X射线激发源为Al的Kα射线，能量为1486.6eV，功率300W，分析时的基础真空为3×10⁻⁷Pa，电子结合能用Cls峰（284.6eV）进行校正。

3 实验结果及分析

3.1 聚四氟乙烯表面形貌的观察

图2是通过扫描电镜观察到的不同能量密度下单脉冲准分子激光束照射聚四氟乙烯后的表面形貌，(a)、(b)、(c)中上面的图为分屏后局部放大的图像Fig.2 Surface microstructure of PTFE from scanning electron microscope radiated by excimer laser beam with different energy densities. The upper figure are the local magnifications of the lower with two separate screens
像。由于激光束为高斯平顶光束，因此决定样品上
打出近似椭圆形的光斑，光斑的大小约为 700 μm ×
400 μm。由图中可以看出，能量过高和能量过低都
会造成样品的不均匀刻蚀，中等能量刻蚀区域相对
比较均匀，且能量过高时出现的裂纹说明表面已遭
到严重破坏[图 2(c) 所示]。这是因为高能量时，材
料表面在强激光的作用下，在很短的时间内表面附
近产生紧密的等离子体，等离子体向激光源方向飞
行的同时将周围的气体压缩形成激波，气体等离子体
和被压缩的气体进一步吸收激波能量引发电子雪崩电
离，激波波阵面内被离化的气体又驱动激波而形成
激波自持爆轰[12](Laser supported detonation,
LSD)。形成的激波自持激波对靶表面产生一个强
烈的冲击，从而使材料表面出现裂纹，剥离等机械损
伤。而低能量刻蚀的不均匀主要是由于激光器在
低能量时发出的激光束不稳定造成的。激光照射后
聚四氟乙烯材料密度增加，出现许多小洞，这些小洞
的出现有利于聚四氟乙烯表面和其他材料之间机械
锁合，从而增强二者之间的粘结性。另外，能量过
低和过高均使材料刻蚀区的边缘不规则，不利于激
光改性和激光加工时的精确定位，可见，在激光表面
处理和加工时，选取适当的激光能量密度是至关重
要的。在我们的实验条件下，激光能量密度在 10～
13 J/cm² 范围内，获得的激光处理表面效果最好。

3.2 X 射线光电子光谱测试结果及分析

图 3 是样品在能量密度为 13.3 J/cm² 的激光照
射前后得到的 X 射线光电子光谱图 3(a) 和图 3(b)
分别是组成聚四氟乙烯的两种主要元素 F 和 C 的 1s
电子所形成的峰，F1s 峰的位置大约出现在 689.6 eV
附近，对应样品中的 CF2 结构，而 Cls 峰则出现在
234～294 eV 的范围内，并且 Cls 中包含两个比较接
近的峰，这是因为 C 存在于不同的化学环境中，即
C 原子与周围不同的原子或原子团相结合造成 C 的
1s 电子结合能的变化。292.0 eV 处的峰对应 C＝F
中的 Cls 电子结合能，而 284.6 eV 的峰主要来自用
作的 C。图 3(c) 和图 3(d) 分别是激光照射前后
氧原子 1s 电子所形成的峰，对应的结合能是 531 eV，
这说明聚四氟乙烯样品在照射前已经有少量氧元素
存在，这可能是由于样品暴露于大气中，因而导致表
面吸附了空气中的氧而被氧化。通过谱峰分离得到
两个比较接近的峰，分别对应 C＝O 与 C＝O 中的
O1s。由于 C＝O 中 O 周围的电子密度要低于 C＝O
中的 O，因此前者对应的 O1s 电子的结合能要略高
于后者，所以结合能在 532.386 eV 位置的峰与 C＝O 中
的 O1s 对应，而 531.599 eV 处的峰则对应 C＝O 中
的 O1s。

图 3 激光照射前后得到的 X 射线光电子光谱。图 3(a) F1s 电子结合能，图 3(b) Cls 的电子结合能分布，图 3(c) 激光照射前 O1s 电子
结合能，图 3(d) 激光照射后 O1s 电子结合能

Fig. 3 X-ray photoelectron spectrum of the original and laser-treated PTFE. (a) Binding energy of F1s, (b) binding energy
of Cls, (c) binding energy of O1s for the original sample, (d) binding energy of O1s for the laser-treated sample
可以可以看出，激光照射后，F 的含量大幅度减少，F1s 的峰面积从照射前的 22053 减少到 12750。这就证明了激光照射聚四氟乙烯具有明显的去氟效应。另外照射后与 F 结合的 C 比照射前明显减少，对应的 C-F 峰面积从照射前的 2544 减少到 1902，这也证明了激光照射聚四氟乙烯时所发生的去氟效应。在聚四氟乙烯的螺旋结构中，由于 F 原子在 C-C 键骨架的外层紧密堆积，对 C-C 主链起到保护的作用，因此光子首先作用到 C-F 键上，使 C-F 键变得不稳定，部分 F 便脱离 C。C-F 键被破坏后，主链被暴露，继续受到照射而断裂，从而生成小的分子和 C2F2、CF4 等单体。另外，对比照射前的 X 射线光电子能谱数据还可以发现，除 C-O 中的 O1s 峰外，其他谱线的半峰全宽都有一定程度的增加，这也说明激光照射后样品的结构变得更加复杂 [12]。

去氟效应对聚四氟乙烯的表面改性有十分重要的意义。去氟后 C 周围出现空位一方面有利于不同原子的密度梯度间形成交联，另一方面又便于表面含氧基团的引入。交联将大大增加聚四氟乙烯的硬度，而含氧基团基团的引入将大大促进聚四氟乙烯表面粘结性的改善。激光造成去氟的同时也造成了样品表面的氧化，这一点从照射区域相比原始样品明显变暗直接得到证实。因此激光照射后与 F 结合的 C 大量减少，而 C-C 中的 C 含量则明显增加，对应 C-C 的 Cls 电子的峰面积从照射前的 3299 增加到 4719。增加的 C-C 键主要来源于形成的交联。另外，图 3a 和图 3b 可以看出，样品被照射后，与 C 结合的 F 原子 1s 电子的波峰与 C 结合的 F 原子的 1s 电子的能峰能明显增加，这种化学性质的差异引起聚四氟乙烯的重复单元-CF2- 变为复杂，产生去氟效应，氟原子失掉后由于产生交联，氧化 C-C 双键导致 C-F 键中 Cls 和 F1s 电子结构的改变。

激光照射后 O 的含量大约增加了 1 倍，原子数分数从照射前的 8% 增加到了 9%。这也说明在强激光的作用下空气中有更多的 O 参与进来。观察分离后的谱图，可以发现两种 O 的比例明显发生了变化。照射之前以 C-O 存在的 O 基变化高于 C=O 中的 O，而激光照射后以 C-O 存在的 O 大量增加，C=O 的键能 (728 kJ/mol) 大约是 C-O (364 kJ/mol) 的两倍，因此 C-O 键使聚合物变得稳定。同时由于 C=O 键周围电荷密度的增加，有利于跨界方向以及沿界面方向的成键，从而增强了聚四氟乙烯表面与其他材料的粘结性。

3.3 拉曼测试结果及分析

图 4 是用不同的激光能量密度照射聚四氟乙烯得到的拉曼光谱。原始样品在 291 cm⁻¹、384 cm⁻¹、729 cm⁻¹ 和 1380 cm⁻¹ 处的峰属于 A，对称的三种伸缩模式，在 1218 cm⁻¹ 与 1229 cm⁻¹ 处的两条弱线分别对应 E1 和 E2 的对称模，579 cm⁻¹ 与 587 cm⁻¹ 处的峰源于聚四氟乙烯的结构缺陷。随着激光能量的增加，荧光强度明显增强（逐渐被抬高），并且在大约 1600 cm⁻¹ 处出现了一个宽带结构，这个宽带结构是由 C=C 所引起，该 C=C 双键的出现预示着石墨碳的存在[13]，这也是导致表面氧化使照射区域的颜色变暗的原因。

图 4 不同激光能量密度照射聚四氟乙烯后得到的
拉曼光谱

Fig. 4 Raman spectra of PTFE treated by laser beam with different energy densities

4 结 论

主要研究了准分子脉冲激光对聚四氟乙烯材料表面的改性和刻蚀过程，观察了能谱 X 射线光电子能谱和拉曼光谱等手段，激光作用后聚合物表面物理性质和化学结构的改性，进一步对准分子激光与聚合物材料聚四氟乙烯相互作用的机理进行了分析。

参考文献

4 Man Baoyuan, Zhang Yunhai, Lu Guohua et al., Study on surface modification of polytetrafluoroethylene by N⁺ ion
implantation

in Chinese)

欢迎成为《中国光学期刊网》企业会员

中国光学期刊网（http://www.opticsjournal.net）是由中科院上海光学精密机械研究所主办、国内光学期刊界共同参与建设的光学期刊网络信息发布平台。自2004年5月开通以来，得到了广大科研工作者、企事业单位人士的好评。

为进一步提高服务水平，中国光学期刊网从2006年起在信息服务上实行会员制度，凡光电子、激光、光通信等相关的企事业单位均可申请成为中国光学期刊网的企业会员，中国光学期刊网将为会员企业提供优质超值的专业服务。

一、会员企业享受的服务包括：
1. 企业名称在中国光学期刊网首页的会员企业栏目中出现，并链接到企业自己的网址。
2. 会员企业可获赠光学类期刊一份，全年12册，在《中国激光》《光学学报》《激光与光电子学进展》《Chinese Optics Letters》中任选一种。
3. 可免费在“特别推荐”栏目发布文字信息（含广告）10条，每篇不超过2000字。
4. 如在中国光学期刊网发布广告，可享受广告报价的80%优惠。
5. 优先或免费参加光学期刊网组织的各类学术和业务活动。
6. 可免费阅读本网站期刊全文300篇次。

二、会员义务：
1. 注册并在中国光学期刊网递交企业真实信息。
2. 每年交纳会员费2800元，会员资格从交费之日起计算，一年有效。
3. 不得将中国光学期刊网提供给会员的信息转给第三方使用。
4. 尊重并保护本网及论文作者的知识产权。
5. 为在本网发布信息必须遵守中华人民共和国相关法律法规。

三、成为企业会员的步骤：
1. 注册成为中国光学期刊网的一般用户，可以直接填写广告投放申请表单，说明您的意向。
2. 来信mail@opticsjournal.net告知您已经注册成功，并请告知选择何种期刊及收刊地址、联系人。
3. 银行汇款2800元至下列帐户：
 开户行：工商银行上海嘉定支行营业部
 户名：中国科学院上海光学精密机械研究所
 帐号：1001700809026400195
4. 联系人：郑继承，电话：021-68918253；Email：expert@mail.siom.ac.cn