做科研，非一朝一夕

买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
Steady-state Raman gain in visible and near-infrared waveband of SrWO₄ and BaWO₄ crystals

Fang Zhang (张 芳)¹,²*, Qinghua Zhang (张清华)², Bo Wang (王 波)¹,², Dawei Hu (胡大伟)⁴, Haohai Yu (于浩海)¹, Huaijin Zhang (张怀金)¹, Zhongping Wang (王正平)¹,², and Xinguang Xu (许心光)¹,²

¹State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
²Key Laboratory of Functional Crystal Materials and Device, Shandong University, Ministry of Education, Jinan 250100, China
³Chengdu Fine Optical Engineering Research Center, Chengdu 610041, China
⁴Institute of Science Technology for National Defense, Shandong University, Jinan 250100, China

*Corresponding author: yourszhangfang1988@126.com
Received April 22, 2014; accepted October 24, 2014; posted online November 28, 2014

The steady-state stimulated Raman scattering (SRS) gain with different excitation wavelengths ranging from 400 to 1100 nm of tungstate crystals, SrWO₄ and BaWO₄, is systematically researched. As excitation frequency is close to electronic transition frequency, molecular polarizability is not a constant, which has to be taken into account in our work. The experiment and theory agree well with each other and show that SRS gain is not only proportional to Stokes light frequency, but is also inversely proportional to biquadratic excitation frequency.

OCIS codes: 190.2640, 190.5650, 190.5890.
doi:10.3788/COL201412.121902.

The stimulated Raman scattering (SRS) based on the third-order nonlinear optical process¹⁰ is widely popularized as an efficient method to expand new wavelength lasers for satisfying the requirements of various applications. Solid-state Raman lasers can offer flexible wavelength in visible²–⁸ and infrared⁴–⁸ spectral ranges. Due to the excellent mechanical properties, stable chemical properties, non-deliquescent, high laser-induced damage threshold, and large Raman gain, SrWO₄ and BaWO₄ crystals had aroused much attention in Raman laser fields²⁴⁸. The gain coefficient is the most dominating factor for Raman applications. Till now, the reported Raman gain coefficients of SrWO₄ and BaWO₄ crystals mainly concentrated on several individual wavelengths including 532, 1047, and 1064 nm and had no systematically characterization on visible light waveband.

In this letter, we present the SRS gain measurements of these two crystals in 410–600 nm waveband and deduce the Raman gain in near-infrared band using fitting formula. The experimental results are in good agreement with theory, which takes into account the electronic transitions. The Raman gain coefficients decrease rapidly with increase in excitation wavelengths for both the crystals, and at the same time BaWO₄ exhibits better Raman property than SrWO₄ crystal.

The experimental setup is shown in Fig. 1. The pump source was an Opolette HE 355 II tunable laser system whose emission wavelength ranged from 410 to 710 nm, and the pulse energy was tunable over the range of 0–5 mJ. A beam compression system was used to elevate the intensity of the pump beam. Using the knife-edge method, the diameter of the pump beam in the Raman crystal was measured to be ~150 μm. Different filters were adopted, which had high reflection at the pump wavelength and high transmission at Raman scattering wavelength. The average excitation power was measured using an energy/power meter (LPE-1C). The scattering light was detected by a spectrograph (HR4000CG-UV-NIR, Ocean Optics Inc.).

We chose 10 representative wavelengths as incident wavelength (IWL) ranging from 410 to 600 nm at 300 K. Utilizing the equation \(M = P/frS \), where \(P \) is the threshold power, \(f = 20 \text{ Hz} \) is the pulse frequency, \(r \) is the pulse width, and \(S \) is light spot area, the SRS threshold \(M \) is calculated. Using steady-state Raman gain equation \(G_{ML} = 25 \), where \(L \) is the length of the Raman crystal⁹, the SRS gain \(G \) was obtained. Table 1 shows the measured results including the pump pulse widths \(r \), first Stokes wavelengths (FSWLs), frequency shifts \(\Delta \nu \), the pump thresholds, and Raman gain coefficients. It shows that the gain coefficient obviously decreased with the increase in excitation wavelength. For SrWO₄ and BaWO₄ crystals, the Raman

Fig. 1. Schematic of SRS experiment. OPO, optical parametric oscillator.
Table 1. Raman Gain and Other Parameters of SrWO₄ and BaWO₄ Crystals with Excitation Wavelength Varying from 410 to 600 nm

<table>
<thead>
<tr>
<th>IWL (nm)</th>
<th>τ (ns)</th>
<th>SrWO₄ (L = 48.61 nm, K⊥C₄, E//C₄)</th>
<th>BaWO₄ (L = 21.24 nm, K⊥C₄, E//C₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FSWL (nm)</td>
<td>Δν_g (cm⁻¹)</td>
</tr>
<tr>
<td>410</td>
<td>4.7</td>
<td>426.1</td>
<td>921.6</td>
</tr>
<tr>
<td>430</td>
<td>4.6</td>
<td>447.8</td>
<td>924.4</td>
</tr>
<tr>
<td>450</td>
<td>4.7</td>
<td>469.5</td>
<td>923.0</td>
</tr>
<tr>
<td>470</td>
<td>4.4</td>
<td>491.3</td>
<td>922.4</td>
</tr>
<tr>
<td>490</td>
<td>4.5</td>
<td>513.2</td>
<td>922.6</td>
</tr>
<tr>
<td>510</td>
<td>4.5</td>
<td>535.2</td>
<td>923.2</td>
</tr>
<tr>
<td>530</td>
<td>4.2</td>
<td>557.3</td>
<td>924.3</td>
</tr>
<tr>
<td>550</td>
<td>4.1</td>
<td>579.4</td>
<td>922.6</td>
</tr>
<tr>
<td>580</td>
<td>4.3</td>
<td>612.8</td>
<td>922.8</td>
</tr>
<tr>
<td>600</td>
<td>4.3</td>
<td>635.2</td>
<td>923.6</td>
</tr>
</tbody>
</table>

*C₄ is the optic principal axis.

Fig. 2. Experimental data of Raman gain (dark spots) and fitting curves adopting Eq. (3) (red solid lines): (a) SrWO₄ and (b) BaWO₄ crystals.
gain is proportional to Stokes frequency and inversely proportional to the biquadratic pump excitation frequency. It shows \(3.832 \times 10^{16} \text{ cm}^{-2} \text{GW}^{-1}\) for proportionality coefficient \(D_s\) and \(3.06 \times 10^4 \text{ cm}^{-1}\) for resonance electronic frequency \(\nu_s\) for SrWO\(_4\) crystal, and \(1.551 \times 10^7 \text{ cm}^{-2} \text{GW}^{-1}\) for proportionality coefficient \(D_B\) and \(3.51 \times 10^4 \text{ cm}^{-1}\) for resonance electronic frequency \(\nu_B\) for BaWO\(_4\) crystal. From our fitting results, SrWO\(_4\) Raman gain is 4.6 cm/GW for 1047 nm excitation wavelength, which is much close to 4.7 cm/GW reported by Basiev et al. in 2004\(^{16}\). And the Raman gain coefficients of BaWO\(_4\) crystal are 36.0 and 10.0 cm/GW for 532 and 1064 nm excitation wavelengths, respectively, which is similar to the previous reports (38.2 and 8 ± 1.6 cm/GW) by Černý et al. in 2001\(^{15}\) and Lisinetskii et al. in 2005\(^{13}\). It indicates that although our measurement scope is 400–600 nm, yet the fitting curve is appropriate to the scope ranging from visible to near infrared.

In order to make sure that there is electronic transition in 410–600 nm spectral region for these two Raman crystals, we measure the photoluminescence spectra (270 nm light excitation) using high sensitive fluorescence spectrometer (FS920, Edinburgh) and the results are shown in Fig. 4. It can be seen that there are emission spectral lines ranging from 410 to 600 nm. According to Refs.\(^{16,17}\), the blue luminescence band was related to the emission of regular [WO\(_4\)]\(^{2-}\) center, and green and red luminescence bands were caused by (WO\(_4^+\)+F) center. According to Eq. (4), a resonant enhancement of SRS is excited when frequency transitions \(\nu_p - \nu_r\) or \(\nu_p - 2\nu_r\) are close to the pump frequency \(\nu_p\). So the molecular polarizability \(\partial \alpha/\partial q\) is not a simple constant again under this circumstance and Eq. (5) is more appropriate compared with Eq. (3).

In conclusion, we demonstrate the SRS gain performance of two important tungstate crystals, SrWO\(_4\) and BaWO\(_4\). The Raman gain coefficients rapidly decrease with the increase in excitation wavelength. Using theoretical fitting analysis, we determine that SRS gain is proportional to Stokes light frequency and inversely proportional to biquadratic pump light frequency. It is evident that when the pump light approaches the electronic transition frequency, the molecular polarizability is not a constant. Our experiments show the Raman gain performance in the visible and near-infrared wavebands, and the BaWO\(_4\) crystal possess larger Raman gain than the SrWO\(_4\) crystal. The fitting curves supply good references for different Raman applications of these two crystals.

This work was supported by the National Natural Science Foundation of China (No. 61178060), the Program for New Century Excellent Talents in University (No. NCET-10-0552), the Independent Innovation Foundation of Shandong University (No. 2012TS215), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province (No. 2012JQ18).

References