做科研，非一朝一夕

买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！

Ce$^{3+}$ ion-doped α-NaYF$_4$ single crystal for UV laser

Dongsheng Jiang (江东升)1, Haiping Xia (夏海平)1,*, Jian Zhang (张 健)4, Zhigang Feng (冯志刚)1, Cheng Wang (王 成)1, Xuemei Gu (谷雪梅)1, Yuepin Zhang (张约品)1, Haochuan Jiang (江浩川)2, and Baojiu Chen (陈宝玖)3

1Key Laboratory of Photoelectronic Materials, Ningbo University, Ningbo 315211, China
2Ningbo Institute of Materials Technology and Engineering, the Chinese Academy of Sciences, Ningbo 315211, China
3Department of Physics, Dalian Maritime University, Dalian 116026, China

*Corresponding author: hpxcm@nbu.edu.cn

Received January 6, 2016; accepted March 11, 2016; posted online May 9, 2016

A Ce$^{3+}$ ion-doped α-NaYF$_4$ single crystal of high quality is grown successfully by an improved flux Bridgman method under the conditions of taking the chemical raw composition of NaF:KF:YF$_3$:CeF$_3$ in the molar ratio of 30:18:48:4, where the KF is shown to be an effective assistant flux. The x ray diffraction, absorption spectra, excitation spectra, and emission spectra of the Ce$^{3+}$-doped α-NaYF$_4$ single crystal are measured to investigate the phase and optical properties of the single crystals. The absorption spectrum of the Ce$^{3+}$: α-NaYF$_4$ shows a strong band that peaks at the wavelength of 300 nm. The emission spectrum of the Ce$^{3+}$: α-NaYF$_4$ emits an intense ultraviolet (UV) band at the wavelength of 332 nm under the excitation of 300 nm light. Two separated luminous bands of 330 and 350 nm, which correspond to the transitions 5d \rightarrow 2$F_{5/2}$ and 5d \rightarrow 2$F_{7/2}$, can be obtained by Gauss fitting. The strong emission intensity at the UV band and the excellent optical transmission in the range of UV wavelengths indicate that Ce$^{3+}$: α-NaYF$_4$ single crystals can be considered as a promising material for UV lasers.

OCIS codes: 160.0160, 230.0230, 260.1180, 300.0300.

doi: 10.3788/COL201614.061601.

In recent decades, the development of ultraviolet (UV) solid-state lasers has attracted great interest for their advantages of stable physical and chemical properties, narrow flourespar spectral lines, strong absorption band, and high fluorescence quantum efficiency. UV lasers based on solid-state materials have many practical applications, such as medical procedures, semiconductor processing, optical communications and remote sensing, and so on. Although various kinds of lasers and tunable color center lasers have been investigated as UV sources, their applications are still restricted because many of them only operate at low temperatures and some of their materials deteriorate.

Rare earth ion-doped solid-state materials are mainly considered for devices due to the abundant energy levels of rare earth ions and the super properties of some of their matrixes. The Ce$^{3+}$ ion is one of the most important active ions applied to UV lasers because of the transition 5d \rightarrow 4f around 325 nm2. The optical spectra and UV lasers based on Ce$^{3+}$ ion-doped single crystals, glasses, and glass ceramics have already been studied2.

Besides the rare earth ion dopant, the host material also plays an important role in the doping concentration, luminescence efficiency, thermal stability, etc. In the reported Ce$^{3+}$ ion-doped materials, fluoride single crystals such as LiYF$_4$ were mostly mentioned due to their low phonon energy, good chemical and thermal stability, high transparency at UV wavelengths, and high luminescent efficiency2.

NaYF$_4$ crystals, such as the cubic α-NaYF$_4$ and the hexagonal β-NaYF$_4$, have been widely studied for their application as excellent host for up-conversion2 because of their low maximum phonon energy, which is about 360 cm$^{-1}$. More recently, α-NaYF$_4$ bulk single crystals doped with Ho$^{3+}$/Yb$^{3+}$/Er$^{3+}$, Tm$^{3+}$/Er$^{3+}$/Ho$^{3+}$, and Tm$^{3+}$/Yb$^{3+}$ were successfully grown in our laboratory by an improved flux Bridgman method. The transmittance in the UV wavelength and the Raman spectra of an α-NaYF$_4$ single crystal have already recorded2. Compared with LiYF$_4$ single crystals, the α-NaYF$_4$ has a lower-value maximum phonon energy, about 390 cm$^{-1}$, and a higher transparency in the UV range2. The excellent properties of α-NaYF$_4$ single crystals in thermal, mechanical, chemical, and optical behaviors are beneficial for its application in UV lasers to obtain a high luminous efficiency and high stability. However, there have been few reports for Ce$^{3+}$ ion-doped α-NaYF$_4$ bulk single crystals for UV lasers because of the difficulty of the crystal growth. In this Letter, the Ce$^{3+}$ was incorporated in an α-NaYF$_4$ single crystal. The concentration of Ce$^{3+}$ in the α-NaYF$_4$ single crystal was measured, and the optical performance of the obtained single crystal was explored to get a better-quality UV emission.

The Ce$^{3+}$ doped α-NaYF$_4$ single crystal was grown by a vertical Bridgman method using KF as the flux in a NaY-YF$_3$ system. The raw materials were commercially available powders of high purity NaF (99.99%), KF (99.99%), YF$_3$ (99.99%), and CeF$_3$ (99.99%). The moisture and some oxygen impurities in the fluoride powders could be removed completely using the high-temperature hydrofluorinating method, by which the powders were sintered with anhydrousHF at 750°C for 8 h. The molar ratio of the powders was NaF:KF:YF$_3$:CeF$_3$ = 30:18:48:4.
Then, the mixture of those materials was ground about an hour in a mortar. The growth orientation was along the \(a \)-axis by using an oriented seed crystal. The temperature gradient cross-solid-liquid interface was 70–90°C/cm; the growth process was carried on by lowering the crucible at a rate of \(\sim 0.6 \) mm/h. The detailed process of crystal growth is described elsewhere\[^{[10]}\]. The obtained crystal shows high transparency. However, a white region of several centimeters in length which is main KF, CeF\(_3\), and some deviating components excluded from the melt exists at the top of the boule, corresponding to the final portion of the melt to freeze. The as-grown crystal was cut into pieces at the top of the boule, corresponding to the final portion of crystal. An examination using a polarizing microscope showed that the single crystal part is free from macroscopic defects.

The Ce\(^{3+}\) concentration in the \(\alpha \)-NaYF\(_4\) single crystal was measured by an inductive coupled plasma (ICP) atomic emission spectrometer (PerkinElmer Inc., Optima 3000) and about 0.788 \(\times 10^{20} \) ions/cm\(^3\). The phase composition of the as-obtained crystals was recorded by X-ray diffraction (XRD) using an XD-98X diffractometer (XD-3, Beijing). The scan was performed in the 2\(\theta \) range from 10°–90° with a scanning step size of 0.02° and a 6 s swept time. A Cary 5000 UV/VIS/NIR spectrophotometer (Agilent Co., America) recorded the absorption spectra measured using an F-4500 spectrophotometer (Hitachi high-technologies Co., Tokyo, Japan). All the above measurements were carried out at room temperature, and the samples were under the same conditions to get comparable results.

The phase compositions of the as-prepared sample were analyzed by powder XRD. Figure 1(a) shows the XRD patterns of the \(\alpha \)-NaYF\(_4\);Ce\(^{3+}\) sample. Figure 1(b) shows the XRD patterns of card JCPD 77-2042\[^{[10]}\]. It confirms that the transparent crystal obtained is an \(\alpha \)-NaYF\(_4\) single crystal and that KF was excluded from the final part of the boule. Notably, compared with card JCPD 77-2042, the peak positions and intensity pattern matched well. It also confirms that the current Ce\(^{3+}\) ion doping level and introduction of K\(^+\) ions do not bring any meaningful changes to the single crystal structure. As is well known, an \(\alpha \)-NaYF\(_4\) single crystal has a fluorite structure (CaF\(_2\)), in which Na\(^+\) and Y\(^{3+}\) ions are randomly distributed in the cation sites, which are situated in the cubic center, and its lattice constants could be calculated from the XRD pattern data as the following lattice parameters\[^{[12]}\]: \(a = b = c = 0.5510 \) nm for the lower part of the single crystal corresponding to the initial stage of crystal growth, and \(a = b = c = 0.5562 \) nm for the upper part of the single crystal corresponding to the final stage of crystal growth, which are close to the standard parameters as shown in Fig. 1 \((a = b = c = 0.5470 \text{ nm})\).

The absorption spectra of Ce\(^{3+}\)-doped \(\alpha \)-NaYF\(_4\) single crystals are shown in Fig. 2. It is obvious that the Ce\(^{3+}\);\(\alpha \)-NaYF\(_4\) single crystals have only one intense absorption peak located at 300 nm. The absorption peak represents the absorption transition of Ce\(^{3+}\) ion in an \(\alpha \)-NaYF\(_4\) single crystal from the ground state to the excited state, viz., the \(4d \rightarrow 5f \) electronic transition. In contrast, the single crystal doped with Ce\(^{3+}\) grown by the Czochralski method shows the absorption peak at 297 nm\[^{[2]}\]. They are almost similar. Figures 3(a) and 3(b) display the excitation spectrum of the Ce\(^{3+}\)-doped \(\alpha \)-NaYF\(_4\) single crystal by measuring the emission at 332 nm and the emission spectrum for the Ce\(^{3+}\)-doped \(\alpha \)-NaYF\(_4\) single crystal under excitation at 300 nm wavelengths. It can be noted from Figs. 3(a) and 3(b) that there exists an excitation band at \(\sim 300 \) nm and an strong, sharp UV emission band at the wavelength of 332 nm.

It is known that the stable state of the rare-earth Ce\(^{3+}\) ion has a \(4f^1 \) configuration and the excited state has a \(5d^1 \) configuration\[^{[12]}\]. The \(4f \) configuration is in the \(5s \) configuration and \(5p \) configuration. Thus, interference from the surrounding plasma electric field is small, and its energy level splitting obeys the spin orbit. The \(4f^1 \) configuration splits into two levels with \(^2F_{7/2} \) and

![Fig. 1. XRD pattern of (a) Ce\(^{3+}\);\(\alpha \)-NaYF\(_4\) crystal and (b) literature data of the corresponding bulk materials with crystal structure for \(\alpha \)-NaFY\(_4\) (JCPDS 77-2042).](image1)

![Fig. 2. UV absorption spectra of the \(\alpha \)-NaYF\(_4\);Ce\(^{3+}\) single crystal.](image2)
shows fitted results of the luminescence be reflected from the two emission peaks. Table state of 300 nm. The fitted results indicate that the centers ofing to the emission spectrum of the excitation wavelength Ce3⁺ the fitted results of the luminescence spectra of the are at 330 and 350 nm, respectively. The splitting energy of Ce3⁺ is the energy level of a Ce3⁺ α-crystal (curve a) and the emission spectra of the Fig. 3. Excitation spectra of the 2 Fig. 4. Fitted results of luminescence spectra of Ce3⁺ ion-doped α-NaYF4 single crystal excited by 300 nm wavelength. The inset is the energy level of a Ce3⁺ ion.

$^{2}F_{5/2}$ for the spin-orbit (LS) coupling. The first excited state of Ce³⁺ ions is the $5d$ configuration; because the $5d$ configuration is more sensitive to the environment, the strong electro-acoustic coupling divides the $5d$ configuration into five configurations at room temperature. Because the $5f \rightarrow 4d$ electronic transition is allowed, the wavelength of 332 nm belongs to the electric dipole transition of the $5f \rightarrow 4d$ electronic transition and it can be seen as consisting of two broadbands. All luminescence spectra can be fitted by two Gaussian functions corresponding to the luminescence transitions from the lowest $5d$ state to the $^{2}F_{5/2}$ and $^{2}F_{7/2}$ levels of the $4f$ state. Figure 4 shows fitted results of the luminescence of Ce³⁺:α-NaYF₄ by two Gaussian functions corresponding to the emission spectrum of the excitation wavelength of 300 nm. The fitted results indicate that the centers of the $5d \rightarrow ^{2}F_{5/2}$ and $5d \rightarrow ^{2}F_{7/2}$ luminescence transitions are at 330 and 350 nm, respectively. The splitting energy of about 2000 cm⁻¹ between the $^{2}F_{7/2}$ and $^{2}F_{5/2}$ levels can be reflected from the two emission peaks. Table 1 shows the fitted results of the luminescence spectra of the Ce³⁺:NaYF₄ single crystal.

<table>
<thead>
<tr>
<th>Excitation source</th>
<th>Peak: $5d \rightarrow ^{2}F_{5/2}$</th>
<th>Peak: $5d \rightarrow ^{2}F_{7/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 nm</td>
<td>330 nm</td>
<td>350 nm</td>
</tr>
<tr>
<td></td>
<td>30303 cm⁻¹</td>
<td>28571 cm⁻¹</td>
</tr>
</tbody>
</table>

In conclusion, the Ce³⁺ ion can be incorporated into an α-NaYF₄ single crystal by a modified flux Bridgman method. When excited by the wavelength of 300 nm light, the emission spectra of the α-NaYF₄ single crystals doped with Ce³⁺ ions can emit an intense beam of UV at the wavelength of 332 nm, which is composed of 330 and 335 nm broadbands and which is due to the electric-dipole transition of the $5f \rightarrow 4d$ electronic transition. The strong emission band at UV wavelengths and the super chemical-physical properties indicate that the Ce³⁺ ion-doped α-NaYF₄ single crystal has potential applications in UV lasers.

This work was supported by the National Natural Science Foundation of China (Nos. 51472125 and 51272109) and the K.C. Wong Magna Fund of Ningbo University.

References