光学技术, 2023, 49 (5): 600, 网络出版: 2024-01-04   

基于可调谐激光吸收光谱技术的预混火焰重建算法比较

Comparison of premixed flame reconstruction algorithms based on tunable laser absorption spectroscopy
作者单位
太原理工大学 电气与动力工程学院热能工程系, 山西 太原 030024
引用该论文

单彦博, 张立芳, 赵贯甲, 马素霞. 基于可调谐激光吸收光谱技术的预混火焰重建算法比较[J]. 光学技术, 2023, 49(5): 600.

SHAN Yanbo, ZHANG Lifang, ZHAO Guanjia1, MA Suxia. Comparison of premixed flame reconstruction algorithms based on tunable laser absorption spectroscopy[J]. Optical Technique, 2023, 49(5): 600.

参考文献

[1] 张立芳. 激光收光谱技术测量低浓度多组分气体和二维温度浓度分布的研究[D].浙江大学2017.

[2] 岑可法, 邱坤赞, 朱燕群. 中国能源环境可持续发展问题的探讨(一)[J]. 发电设备,2004(5):245-250.

[3] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science,2005,31(2):171-192.

[4] Guttikunda S K, Jawahar P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India[J]. Atmospheric Environment,2014,92:449-460.

[5] Bian H. Analysis on flue gas pollution of coal-fired boiler and its countermeasures[C]∥IOP Conference Series: Earth and Environmental Science. Xian, China : IOP Publishing,2020,450(1):012028.

[6] 张爽. 中国电力行业温室气体排放影响因素及减排策略研究[D].天津大学,2019.

[7] 彭冬, 金熠, 翟超. 基于TDLAS的二维温度场重建算法[J]. 中国激光,2016,43(11):243-251.

[8] Armstrong B H. Spectrum line profiles: the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1967,7(1):61-88.

[9] Hinkley E D. High‐Resolution Infrared Spectroscopy with a Tunable Diode Laser[J]. Applied Physics Letters,1970,16(9):351-354.

[10] Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express,2015,23(17):22494-22511.

[11] Arroyo M P, Hanson R K. Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser[J]. Applied optics,1993,32(30):6104-6116.

[12] Xu Z Y, Liu W Q, Liu J G, et al. Temperature measurement method based on tunable semiconductor laser absorption spectrum[J]. Journal of Physics,2012,61(23):234204.

[13] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of theoretical Biology,1970,29(3):471-481.

[14] Wang F, Cen K F, Li N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy[J]. Measurement Science and Technology,2010,21(4):045301.

[15] 李金义, 朱可柯, 杜振辉, 等.一种基于 TDLAS 的高分辨率二维温度场重建算法及数值仿真[J]. 实验流体力学,2014,28(3):63-71.

[16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolution neural networks[J]. Communication of the ACM,2017,60(6):84-90.

[17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [EB/OL].(2015-04-10)[2020-02-12].http∥arxiv.org/pdf/1409.1556.pdf.2014.

[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE,2016:770-778.

[19] Huang J, Liu H, Dai J, et al. Reconstruction for Limited-data Nonlinear69Tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,218:187-193.

[20] Deng A, Huang J, Liu H, et al. Deep learning algorithms for temperature field reconstruction of nonlinear tomographic absorption spectroscopy[J]. Measurement:Sensors,2020,10:100024.

[21] Webb S. Deep learning for biology[J]. Nature,2018,554(7693):555-557.

[22] Parallel and Distributed Processing and Applications. 4th International Symposium, ISPA 2006, Sorrento, Italy, December 4-6, 2006, Proceedings[M]. Springer,2006.

[23] Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.

[24] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MIT press,2016.

[25] 邢大伟. 基于可调谐激光吸收光谱技术的气体分布监测的数值模拟与试验研究[D]. 浙江大学,2013.

[26] 王明, 向鹏, 祁建民, 等. 基于改进卷积神经网络的激光吸收光谱层析成像[J]. 应用激光,2021,41(4):890-901.

单彦博, 张立芳, 赵贯甲, 马素霞. 基于可调谐激光吸收光谱技术的预混火焰重建算法比较[J]. 光学技术, 2023, 49(5): 600. SHAN Yanbo, ZHANG Lifang, ZHAO Guanjia1, MA Suxia. Comparison of premixed flame reconstruction algorithms based on tunable laser absorption spectroscopy[J]. Optical Technique, 2023, 49(5): 600.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!