作者单位
摘要
汕头大学 工学院 机械工程系, 广东 汕头 515063
视差不连续区域和重复纹理区域的误匹配率高一直是影响双目立体匹配测量精度的主要问题,为此,本文提出一种基于多特征融合的立体匹配算法。首先,在代价计算阶段,通过高斯加权法赋予邻域像素点的权值,从而优化绝对差之和(Sum of Absolute Differences,SAD)算法的计算精度。接着,基于Census变换改进二进制链码方式,将邻域内像素的平均灰度值与梯度图像的灰度均值相融合,进而建立左右图像对应点的判断依据并优化其编码长度。然后,构建基于十字交叉法与改进的引导滤波器相融合的聚合方法,从而实现视差值再分配,以降低误匹配率。最后,通过赢家通吃(Winner Take All,WTA)算法获取初始视差,并采用左右一致性检测方法及亚像素法提高匹配精度,从而获取最终的视差结果。实验结果表明,在Middlebury数据集的测试中,所提SAD-Census算法的平均非遮挡区域和全部区域的误匹配率为分别为2.67%和5.69%,测量200~900 mm距离的平均误差小于2%;而实际三维测量的最大误差为1.5%。实验结果检验了所提算法的有效性和可靠性。
机器视觉 立体匹配 SAD-Census变换 十字交叉法 引导滤波 machine vision stereo matching SAD-Census transform cross method guided filtering 
中国光学
2024, 17(2): 278
陈建明 1,2李定鲣 1曾祥津 1,2任振波 3[ ... ]秦玉文 1,2,**
作者单位
摘要
1 通感融合光子技术教育部重点实验室,广东省信息光子技术重点实验室,广东工业大学信息工程学院,先进光子技术研究院,广东 广州 510006
2 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3 光场调控与信息感知工业和信息化部重点实验室,陕西省信息光子技术重点实验室,西北工业大学物理科学与技术学院,陕西 西安 710129
提出一种跨模态光学信息交互和模板动态更新的可见光和热红外(RGBT)跟踪方法,选取能够在跟踪速度和精度上取得平衡的Siamese跟踪器作为基本框架,并设计特征交互模块以重构不同模态的信息比例和增强模态间信息交流。在此基础上,基于无锚框的思想构建预测网络,以提升跟踪器的灵活性和通用性,同时提出一种模板动态更新的策略,通过动态更新跟踪模板增强模型对变化目标的适应能力。在GTOT等3个基准数据集上的对比实验表明,所提方法可显著提升跟踪器在复杂环境下的目标跟踪性能。
机器视觉 计算机视觉 目标跟踪 孪生网络 模板更新 
光学学报
2024, 44(7): 0715001
作者单位
摘要
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津 300072
图像匹配能将待匹配图像变换到原有图像的坐标系中,在各种视觉任务中起着重要的作用。基于特征的图像匹配算法能够在图像中匹配到一些更具区分度的特征,与其他图像匹配方法相比,其具有高精度、高灵活性、高鲁棒性等特点。针对传统特征匹配算法匹配稀疏的问题,提出一种基于改进深度特征匹配算法的密集特征匹配方法。首先,通过VGG网络提取图像的一系列特征图,在初始特征图进行最邻近匹配计算单应性矩阵并进行视角变换;然后,基于特征图的频域匹配特点进行深层特征图融合,用于特征粗匹配;最后,基于粗匹配的结果在浅层特征图上进行特征细匹配用于校正特征匹配的结果。实验结果表明:所提算法提升了特征匹配的精度和匹配的特征数量。
机器视觉 卷积神经网络 特征融合 图像匹配 图像处理 
激光与光电子学进展
2024, 61(8): 0815001
作者单位
摘要
西安工业大学光电工程学院,陕西 西安 710021
针对机器视觉检测光学镜片表面疵病时,在单一的照明环境下疵病图像对比度低,检测方法疵病识别率低等问题,提出了一种双光源下光学镜片表面疵病视觉检测方法。根据散射成像原理,在前照光和背照光两种不同的照明方式下,使用图像传感器得到含有疵病的被测光学镜片图像;再将多幅图像通过图像融合算法融合为一幅图像;最后,利用识别算法获得光学镜片表面的疵病尺寸信息。对两种不同的疵病(划痕、麻点)进行检测,将本系统的测试结果与ZYGO干涉仪的处理结果进行对比,结果表明,所提方法测量的麻点误差不超过2.7%,划痕误差不超过0.8%,检测效率比干涉仪提高了98.24%,缩短了检测时间。与单一照明环境下的检测方法和人工检测相比,所提方法对疵病的识别准确率与精度更高。
疵病检测 双光源 机器视觉 散射成像 图像融合 
激光与光电子学进展
2024, 61(10): 1012004
孙伯文 1,2,3周国尊 1,3杨振宇 1,3卞殷旭 1,2,3,*[ ... ]刘旭 1,2,3
作者单位
摘要
1 浙江大学极端光学技术与仪器全国重点实验室,浙江 杭州 310027
2 浙江大学杭州国际科创中心,浙江 杭州 311215
3 浙江大学光电科学与工程学院,浙江 杭州 310027
针对双光子激光直写片上光子引线波导的纳米级对准需求,提出了基于导星数字匹配与纳米智能对准的方法,实现了高精度、高密度片上光子引线互联纳米结构3D直写加工。面向片上光子引线波导的背景与需求,设计了双光子直写光刻系统的光学系统结构,在硬件上设计了独特的导星,在算法上利用机器视觉的智能识别方法,精确定位了片上光子引线波导连接结构。所刻写的光子引线与硅片波导的平均偏差角度为0.19°,绝对位置平均对准精度为29 nm,标准差为17 nm。所提方案为实现高精度、高密度的光学片上互联提供了一种可行的方法,在芯片封装、多材料功能结构制备、复杂结构修饰等高精度加工领域有着重要的科学和应用意义。
光学设计 光刻 机器视觉 片上光子引线 波导加工 双光子激光直写 
光学学报
2024, 44(5): 0522003
作者单位
摘要
1 安徽工程大学计算机与信息学院,安徽 芜湖 241000
2 计算机网络和信息集成教育部重点实验室(东南大学),江苏 南京 210096
3 东南大学影像科学与技术实验室,江苏 南京 210096
提出一种基于多通道交叉卷积UCTransNet(MC-UCTransNet)的图像域双材料分解方法。该网络以UCTransNet为基础架构,采用通道交叉融合转换器和通道交叉注意模块来提高基材料分解性能,实现双输入双输出的端到端映射。网络中通道交叉融合模块和通道交叉注意模块可更好地捕捉复杂的通道信号相关性,以更充分地进行特征提取与融合,实现基材料生成路径之间的信息交换。为进一步提高模型的拟合性能,网络训练时采用混合损失及Sigmoid函数的归一化方法。实验结果表明,在骨骼基材料及软组织碘基材料分解任务中,所提方法能获得优质的基材料图像,与对比方法相比,其分解后的基材料图像在准确度及噪声伪影抑制上表现更好。
机器视觉 双能计算机断层成像 基材料分解 多通道交叉卷积 注意力 噪声抑制 
光学学报
2024, 44(5): 0515001
张普 1,2,3,4刘金清 1,2,3,*肖金超 4熊俊峰 4[ ... ]王忠泽 4
作者单位
摘要
1 福建师范大学医学光电科学与技术教育部重点实验室,福建 福州 350007
2 福建省光子技术重点实验室,福建 福州 350007
3 福建省光电传感应用工程技术研究中心,福建 福州 350007
4 广州工业智能研究院,广东 广州 511458
环境感知是无人驾驶的关键技术,针对相机缺乏深度信息无法定位检测目标以及目标跟踪精度较差的问题,提出一种基于相机与激光雷达融合的目标定位与跟踪算法。该算法通过图像检测框内的激光雷达点云簇在像素平面的面积比例大小获得检测目标的定位信息,然后根据检测目标的轮廓点云在像素坐标系下的横向移动速度和纵向移动速度融合图像检测框中心坐标提高目标跟踪精度。实验结果表明:所提目标定位算法正确率为88.5417%,且平均每帧处理时间仅为0.03 s,满足实时性要求;图像检测框中心横坐标的平均误差为4.49 pixel,纵坐标的平均误差为1.80 pixel,平均区域重叠率为87.42%。
传感器融合 机器视觉 3D激光雷达 目标定位 目标跟踪 
激光与光电子学进展
2024, 61(8): 0828004
作者单位
摘要
1 厦门烟草工业有限责任公司,福建 厦门 361022
2 同济大学机械与能源工程学院,上海 201804
烟草行业高端产品规模的扩大与消费者对产品质量需求的提高,给烟草在线检测技术带来了巨大挑战。针对烟草生产过程中烟丝异物难以剔除,影响卷烟口感、烟草叶片病情害种类繁多且病情复杂、卷烟外包装瑕疵难以识别等问题,传统人工在线检测方法效率低下,且正确率难以保证,无法适应我国烟草行业的高质量发展。在阐明基于机器视觉的烟草在线检测原理的基础上,围绕视觉检测原理和深度学习模型两个方面系统地阐述烟草在线检测技术的研究现状与最新进展,结合现有典型应用分析不同视觉模型以及深度学习模型检测方法的优越性和局限性,进而探讨基于机器视觉的烟草在线检测技术的发展趋势和前景。
机器视觉 图像识别 深度学习 在线检测 瑕疵剔除 
激光与光电子学进展
2024, 61(8): 0800003
袁善帅 1,2丁雷 1,2,3,*
作者单位
摘要
1 中国科学院上海技术物理研究所红外探测与成像技术重点实验室,上海 200083
2 上海科技大学信息科学与技术学院,上海 201210
3 中国科学院大学,北京 100049
自动驾驶场景中,通常会用基于体素化的算法来完成点云3D目标检测任务,因为该类方法拥有计算量少、耗时少等方面的优势。但是当下常用的方法往往会带来双重信息损失,其一是体素化带来的量化误差造成的,其二则是对体素化后的点云信息利用不充分造成的。设计一个三阶段的网络结构来解决信息损失大的问题。第一阶段使用基于体素化的优秀算法完成输出边界框的任务;第二阶段利用一阶段特征图上的信息精修边界框,以解决一阶段对输入信息利用不充分的问题;第三阶段利用了原始点的精确位置信息再次精修边界框,以弥补体素化带来的点云信息损失。在Waymo Open Dataset上,所提多阶段3D目标检测算法的检测精度超过了CenterPoint等受工业界青睐的优秀算法,且满足自动驾驶落地的时间要求。
机器视觉 3D目标检测 激光点云 多阶段 信息增强 
激光与光电子学进展
2024, 61(4): 0415003
作者单位
摘要
中国计量大学计量测试工程学院,浙江 杭州 310018
为实现对流化床中目标颗粒空间位姿追踪测量,开发了一种基于单目视觉及彩色纹理编码球体的位姿测量系统。针对空间位置定位,建立了空间球体成像模型,并基于小孔平面成像模型及相机坐标转换模型,结合空间解析几何相关理论,分析了单目位置测量原理。考虑球体颗粒无法通过自身形状特征实现空间姿态测量,引入纹理特征,通过提取目标颗粒纹理,比较并建立其与合成库中已知方向图像之间的相似关系,实现空间姿态的测量。根据以上理论分析,搭建实验系统并进行了一系列实验。结果表明,位置测量综合误差率不大于0.5%,姿态测量误差不大于2°,验证了所提模型的有效性和可行性。
机器视觉 空间位姿 视觉模型 匹配算法 特征融合 
激光与光电子学进展
2024, 61(4): 0415005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!