首页 > 论文 > 光学 精密工程 > 21卷 > 3期(pp:680-686)

光学材料磨削的亚表面损伤预测

Prediction of grinding induced subsurface damage of optical materials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于压痕断裂力学理论, 建立了工件表面粗糙度与亚表层损伤深度的理论关系模型, 用于预测磨削加工脆性光学材料引起的亚表层损伤深度。利用磁流变角度抛光技术检测了不同磨削加工工艺条件下亚表层的损伤深度, 验证了理论模型的正确性。分析了加工工艺参数对工件表面粗糙度及亚表层损伤深度的影响规律, 提出了提高材料去除率的磨削加工工艺方案。分析结果表明:脆性材料工件的亚表层损伤深度与工件的表面粗糙度呈非线性单调递增关系。工件亚表层损伤深度及工件表面粗糙度均随着切削深度和进给速度的增加而增加, 随着主轴转速的增加而减小。对比实验结果与理论模型预测结果表明, 提出的模型可以准确、无损伤地的预测磨削加工引起的工件亚表层损伤深度。

Abstract

On the basis of indentation fracture mechanics, a theoretical model was developed to evaluate the relationship between surface roughnesses (SRs) and Subsurface Damage Depths (SSDs) of brittle optical materials and to predict their grinding induced SSDs. For validating the feasibility of this method, the SSDs generated with various process parameters were measured by Magnetorheological Finishing (MRF) wedge technique. The influences of processing parameters on the SRs and SSDs were investigated, and a process strategy was also proposed to improve the material removal rate. The prediction results of this theoretical model show that the SSDs are nonlinear monotone increasing with the square of SR values during grinding processes. The SSDs and SRs increase with the increasing of cutting depth and feed rate, while reduce with the increasing of spindle speed. The measurement results of SSDs are consistent with the prediction values of the model, which demonstrates the feasibility of utilizing this model to accurately and non-destructively predict the SSDs.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN305.2;TQ171.68

DOI:10.3788/ope.20132103.0680

所属栏目:微纳技术与精密机械

基金项目:国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(No.U1230110)

收稿日期:2012-10-29

修改稿日期:2013-01-30

网络出版日期:--

作者单位    点击查看

吕东喜:哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
王洪祥:哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
黄燕华:中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900

联系人作者:吕东喜(dongxi_lv@yahoo.com)

备注:吕东喜(1983-), 男, 河北沧州人, 博士研究生, 2007年于燕山大学获得学士学位, 2009年于哈尔滨工业大学获得硕士学位, 主要从事精密磨削及超声加工方面的研究。

【1】LI S, WANG Z, WU Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes [J]. Journal of Materials Processing Technology, 2008, 205: 34-41.

【2】LI Y, ZHENG N, LI H, et al.. Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding [J]. Applied Surface Science, 2011, 257: 2066-2073.

【3】王卓, 吴宇列, 戴一帆,等. 光学材料研磨亚表面损伤的快速检测及其影响规律[J]. 光学 精密工程, 2008, 16(1): 16-21.
WANG ZH, WU Y L, DAI Y F, et al.. Rapid detection of subsurface damage of optical materials in lapping process and its influence regularity [J]. Opt. Precision Eng., 2008, 16(1): 16-21. (in Chinese)

【4】WANG J, LI Y, HAN J, et al.. Evaluating subsurface damage in optical glasses [J]. Journal of the European Optical Society-Rapid Publications, 2011, 6: 1-16.

【5】NEAUPORT J, AMBARD C, CORMONT P, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques [J]. Optical Express, 2009, 17: 20448-20456.

【6】MALKLN S, HWANG T W, Grinding mechanisms for ceramics [J]. Annals of the CIRP, 1996, 45(1): 569-580.

【7】LIU D F, CONG W L, PEI Z J, et al.. A cutting force model for rotary ultrasonic machining of brittle materials [J]. Journal of Machine Tools & Manufacture, 2012, 52: 77-84.

【8】GU W, YAO Z. Evaluation of surface cracking in micron and sub-micron scale scratch tests for optical glass BK7 [J]. Journal of Mechanical Science and Technology, 2011, 25(5): 1167-1174.

【9】LAWN B R, SWAIN M V. Microfracture beneath point indentations in brittle solids [J]. Journal of Materials Science, 1975, 10(1): 113-122.

【10】LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system [J]. Journal of the American Ceramic Society, 1982, 63(9-10): 574-581.

【11】LAMBROPOULOS J C, JACOBS S D, RUCKMAN J. Material removal mechanisms from grinding to polishing [J]. Journal of American Ceramic Society, 1999, 102: 113-128.

【12】MAHMOUD T, TAMAKI J, YAN J. Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope [J]. Key Engineering Materials, 2003, 238/239: 131-136.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF