首页 > 论文 > 光学学报 > 39卷 > 2期(pp:215001--1)

融合相关滤波与关键点匹配的跟踪算法

Tracking Algorithm Based on Correlation Filter Fusing with Keypoint Matching

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种融合相关滤波与关键点匹配的跟踪算法。利用多个基于支持向量机的相关滤波器, 分别对目标进行跟踪和验证, 同时建立并实时更新一个目标和背景关键点数据库。在验证跟踪失败后, 利用关键点匹配的方法对全局关键点进行分类, 根据分类结果对目标关键点进行分析,从而得到重检测结果。实验结果表明, 在运动模糊、变形、目标遮挡、消失等复杂跟踪场景下, 所提算法比现有算法具有更好的准确性和稳健性。

Abstract

A tracking algorithm is proposed based on correlation filter fusing with keypoint matching. The object is tracked and verified by multiple support-vector-based correlation filters, respectively. Meanwhile, a database containing the keypoints of the target and the background is established and updated in real-time. After the validation of a tracking failure, the global keypoints are classified by utilizing the keypoint matching method and the target keypoints are analyzed according to these classified results. Thus the redetection results are obtained. The experimental results show that the proposed method has a better accuracy and robustness than those by the existing methods in the complex tracking scenes of motion blur, deformation, object occlusion, disappearance and so on.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201939.0215001

所属栏目:机器视觉

基金项目:国家自然基金青年科学基金(61702260)、南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170716)

收稿日期:2018-07-24

修改稿日期:2018-09-02

网络出版日期:2018-09-17

作者单位    点击查看

张哲:南京航空航天大学民航学院, 江苏 南京 211106
孙瑾:南京航空航天大学民航学院, 江苏 南京 211106
杨刘涛:南京航空航天大学民航学院, 江苏 南京 211106

联系人作者:张哲(zhangzhe@nuaa.edu.cn)

【1】Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking[J]. Pattern Recognition Letters, 2014, 49: 250-258.

【2】Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.

【3】Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【4】Danelljan M, Hger G, Khan F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(8): 1561-1575.

【5】Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, 2014: 254-265.

【6】Liu T, Wang G, Yang Q X. Real-time part-based visual tracking via adaptive correlation filters[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 4902-4912.

【7】Liu S, Zhang T Z, Cao X C, et al. Structural correlation filter for robust visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 4312-4320.

【8】Zuo W M, Wu X H, Lin L, et al. Learning support correlation filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018: 2829180.

【9】Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

【10】Supani III J S, Ramanan D. Self-paced learning for Long-term tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 2379-2386.

【11】Zhu G, Porikli F, Li H D. Beyond local search: tracking objects everywhere with instance-specific proposals[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 943-951.

【12】Zhu G B, Wang J Q, Wu Y, et al. Collaborative correlation tracking[C]. Proceedings of the British Machine Vision Conference, 2015: 184.

【13】Ma C, Yang X K, Zhang C Y, et al. Long-term correlation tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 5388-5396.

【14】Wang M M, Liu Y, Huang Z Y. Large margin object tracking with circulant feature maps[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4800-4808.

【15】Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 1090-1097.

【16】Ma C, Huang J B, Yang X K, et al. Adaptive correlation filters with long-term and short-term memory for object tracking[J]. International Journal of Computer Vision, 2018, 126(8): 771-796.

【17】Leutenegger S, Chli M, Siegwart R Y. BRISK: binary robust invariant scalable keypoints[C]. International Conference on Computer Vision, 2011: 2548-2555.

【18】Nebehay G, Pflugfelder R. Clustering of static-adaptive correspondences for deformable object tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 2784-2791.

【19】Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 2411-2418.

【20】Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.

【21】Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer Vision-ECCV 2012. Heidelberg: Springer, 2012, 7575: 702-715.

【22】Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision (ICCV), 2017: 1144-1152.

【23】Danelljan M, Hger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision (ICCV), 2015: 4310-4318.

【24】Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1401-1409.

引用该论文

Zhang Zhe,Sun Jin,Yang Liutao. Tracking Algorithm Based on Correlation Filter Fusing with Keypoint Matching[J]. Acta Optica Sinica, 2019, 39(2): 0215001

张哲,孙瑾,杨刘涛. 融合相关滤波与关键点匹配的跟踪算法[J]. 光学学报, 2019, 39(2): 0215001

被引情况

【1】刘万军,孙虎,姜文涛. 自适应特征选择的相关滤波跟踪算法. 光学学报, 2019, 39(6): 615004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF