中国激光, 2019, 46 (9): 0902003, 网络出版: 2019-09-10   

激光-MIG复合焊接热过程与熔池流场的数值分析 下载: 1086次

Numerical Simulation of Thermal Process and Fluid Flow Field in Laser-MIG Hybrid Weld Pools
作者单位
1 中车青岛四方机车车辆股份有限公司, 山东 青岛 266111
2 山东大学材料连接技术研究所, 山东 济南 250061
引用该论文

吴向阳, 徐剑侠, 高学松, 武传松. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 0902003.

Wu Xiangyang, Xu Jianxia, Gao Xuesong, Wu Chuansong. Numerical Simulation of Thermal Process and Fluid Flow Field in Laser-MIG Hybrid Weld Pools[J]. Chinese Journal of Lasers, 2019, 46(9): 0902003.

参考文献

[1] Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636-5641.

[2] 辜磊, 刘建华, 汪兴均. 激光-电弧复合焊接技术在船舶制造中的应用研究[J]. 造船技术, 2005( 5): 38- 40.

    GuL, Liu JH, Wang XJ. Research and application of laser-arc hybrid welding in shipbuilding[J]. Marine Technology, 2005( 5): 38- 40.

[3] Mahrle A, Beyer E. Hybrid laser beam welding: classification, characteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3): 169-180.

[4] 顾思远, 刘政君, 张培磊, 等. 高速激光电弧复合焊接高强钢焊缝的形貌及成形机理[J]. 中国激光, 2018, 45(12): 1202007.

    Gu S Y, Liu Z J, Zhang P L, et al. Appearances and formation mechanism of welds in high-strength steels by high speed laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2018, 45(12): 1202007.

[5] 史鹏飞, 黄坚, 澹台凡亮, 等. 27SiMn高强钢激光-MAG复合焊接头组织和性能[J]. 中国激光, 2017, 44(10): 1002001.

    Shi P F, Huang J, Tantai F L, et al. Microstructures and properties of 27SiMn high-strength steel joints by laser-MAG hybrid welding[J]. Chinese Journal of Lasers, 2017, 44(10): 1002001.

[6] Katayama S, Uchiumi S, Mizutani M, et al. Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding[J]. Welding International, 2007, 21(1): 25-31.

[7] Campana G, Fortunato A, Ascari A, et al. The influence of arc transfer mode in hybrid laser-mig welding[J]. Journal of Materials Processing Technology, 2007, 191(1/2/3): 111-113.

[8] 胡连海, 黄坚, 庄凯, 等. 激光与电弧间距对激光复合焊熔滴过渡的影响[J]. 焊接学报, 2010, 31(2): 49-52, 115.

    Hu L H, Huang J, Zhuang K, et al. Influence of distance between laser and MIG arc on drop transfer process of CO2 laser-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 49-52, 115.

[9] Gao M, Zeng X Y, Hu Q W. Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding[J]. Journal of Materials Processing Technology, 2007, 184(1/2/3): 177-183.

[10] Tani G, Campana G, Fortunato A, et al. The influence of shielding gas in hybrid laser-MIG welding[J]. Applied Surface Science, 2007, 253(19): 8050-8053.

[11] 何双, 陈辉, 蔡创, 等. 氦-氩混合保护气体对铝合金激光-MIG复合焊接特性的影响[J]. 中国激光, 2018, 45(12): 1202005.

    He S, Chen H, Cai C, et al. Influence of He-Ar mixed shielding gas on laser-MIG hybrid welding characteristic of aluminum alloys[J]. Chinese Journal of Lasers, 2018, 45(12): 1202005.

[12] Zhang Z Z, Wu C S. Effect of fluid flow in the weld pool on the numerical simulation accuracy of the thermal field in hybrid welding[J]. Journal of Manufacturing Processes, 2015, 20: 215-223.

[13] Gao Z G, Wu Y X, Huang J. Analysis of weld pool dynamic during stationary laser-MIG hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(9/10): 870-879.

[14] Zhou J, Tsai H L. Modeling of transport phenomena in hybrid laser-MIG keyhole welding[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4353-4366.

[15] Cho J H, Na S J. Three-dimensional analysis of molten pool in GMA-laser hybrid welding[J]. Welding Journal, 2009, 88(4): 35-44.

[16] Cho W I, Na S J, Cho M H, et al. Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J]. Computational Materials Science, 2010, 49(4): 792-800.

[17] Zhao L, Sugino T, Arakane G, et al. Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding[J]. Science and Technology of Welding and Joining, 2009, 14(5): 457-467.

[18] 刘黎明, 王继锋, 宋刚. 激光电弧复合焊接AZ31B镁合金[J]. 中国激光, 2004, 31(12): 1523-1526.

    Liu L M, Wang J F, Song G. Hybrid laser-arc welding of AZ31B Mg alloy[J]. Chinese Journal of Lasers, 2004, 31(12): 1523-1526.

[19] 高志国, 黄坚, 李亚玲, 等. 激光-MIG复合焊中激光与电弧前后位置对焊缝成形的影响[J]. 焊接学报, 2008, 29(12): 69-73.

    Gao Z G, Huang J, Li Y L, et al. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2008, 29(12): 69-73.

[20] Gao X S, Wu C S, Goecke S F, et al. Numerical simulation of temperature field, fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding[J]. Journal of Materials Processing Technology, 2017, 242: 147-159.

[21] 张皓庭. 激光+GMAW复合热源焊接熔池与小孔动态行为的数值模拟[D]. 济南: 山东大学, 2015.

    Zhang HT. Numerical analysis of weld pool and keyhole dynamics in laser+GMAW hybrid welding[D]. Jinan: Shandong University, 2015.

[22] Kaplan A. A model of deep penetration laser welding based on calculation of the keyhole profile[J]. Journal of Physics D: Applied Physics, 1994, 27(9): 1805-1814.

[23] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1997, 30(18): 2541-2552.

[24] Cho J H, Na S J. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5372-5378.

[25] von AllmenM, BlatterA. Laser-beam interactions with materials[M]. Berlin, Heidelberg: Springer, 1995: 128- 131.

[26] Tsao K C, Wu C S. Fluid flow and heat transfer in GMA weld pools[J]. Welding Journal, 1988, 67(3): 70s-75s.

吴向阳, 徐剑侠, 高学松, 武传松. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 0902003. Wu Xiangyang, Xu Jianxia, Gao Xuesong, Wu Chuansong. Numerical Simulation of Thermal Process and Fluid Flow Field in Laser-MIG Hybrid Weld Pools[J]. Chinese Journal of Lasers, 2019, 46(9): 0902003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!