中国光学, 2018, 11 (5): 790, 网络出版: 2018-11-25  

移动地面站宽温度跟瞄系统信标接收镜头

Wide temperature range beacon receiver lens for tracking and aiming system of mobile ground station
作者单位
长春理工大学 空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
摘要
为了保证移动地面站光电跟瞄系统在野外复杂环境下具有稳定的跟踪精度, 针对-20~40 ℃宽工作温度范围下信标接收镜头成像光斑弥散的问题, 进行了光学系统与光机结构的设计, 提出了一种以步进电机驱动补偿镜组的温度补偿方案。分析了极限温度条件下光学系统性能的改变以及不同温度补偿方案的效果, 针对光电跟瞄系统的指标要求, 设计了光机结构并进行了力学、光学性能的分析。分析结果表明, 系统一阶模态为370 Hz; 补偿镜组向前移动0695 mm能够补偿-20 ℃时光学系统成像光斑的弥散, 令中心视场光斑尺寸由73 μm降为32 μm, 边缘视场光斑尺寸由77 μm降为157 μm; 向后移动0885 6 mm能够补偿40 ℃时成像光斑的弥散, 令中心视场光斑尺寸由94 μm降为39 μm, 边缘视场光斑尺寸由96 μm降为218 μm; 使用ZYGO干涉仪对光学系统的像质进行检测, 波像差RMS值(均方根值)为0061λ(λ=6328 nm), PV值(峰谷值)为0466λ, 能够满足跟瞄系统指标要求。
Abstract
In order to ensure the stable tracking accuracy of the photoelectric tracking and aiming system of the mobile ground station in the complex environment in the field, the optical system and optical structure are designed to solve the problem of imaging spot dispersion of the beacon receiving lens under the working temperature width of -20~40 ℃. A temperature compensation scheme for driving the compensation lens group with a stepping motor is proposed. The change of optical system performance under extreme temperature conditions and the effect of different temperature compensation schemes are analyzed. According to the requirements of photoelectric tracking and aiming system, the opto-mechanical structure is designed and the mechanical and optical properties are analyzed. The analysis results show that the first-order mode of the system is 370 Hz; the compensation lens group moves forward by 0695 mm to compensate the dispersion of the optical system imaging spot at -20 ℃, and the central field spot size is reduced from 73 μm to 32 μm and the edge field spot size is reduced from 77 μm to 157 μm; moving back 0885 6 mm can compensate for the dispersion of the imaging spot at 40 ℃, reducing the central field spot size from 94 μm to 39 μm, and the edge field spot size from 96 μm to 218 μm. The image quality of the optical system is also detected using a ZYGO interferometer. The RMS(root mean square) valueof the wave aberration is 0061λ(λ=6328 nm), and the PV(peak-to-valley) value is 0466λ, which can satisfy the index requirements of the tracking and aiming system.
参考文献

[1] 吴晓靖,孟军和.红外光学系统无热化设计的途径[J].红外与激光工程,2003,32(6): 572-576.

    WU X J,MENG J H. Approach of athermalizing infrared optical systems[J]. Infrared and Laser Engineering,2003,32(6): 572-576.(in Chinese)

[2] 王子威.机械被动式温度自适应红外镜头热补偿分析[D].昆明: 昆明理工大学,2014: 9-30.

    WANG Z W. Thermal compensation analysis of infrared lenses with mechanical passive temperature adaption[D]. Kunming: Kunming University of Science and Technology,2014: 9-30.(in Chinese)

[3] 王平,张国玉,王伟,等.航空变焦距镜头被动消热设计[J].光学学报,2012,32(9): 258-264.

    WANG P,ZHANG G Y,WANG W,et al.. Passive athermal design of aerial zoom lenses[J]. Acta Optica Sinica,2012,32(9): 258-264.(in Chinese)

[4] 奚晓,李晓彤,岑兆丰.被动式红外光学系统无热设计[J].光学仪器,2005,27(1): 42-46.

    XI X,LI X T,CEN Z F. Passive infrared optical system without thermal design[J]. Optial Instruments,2005,27(1): 42-46.(in Chinese)

[5] 林琳,门克内木乐,解晓蓬,等.大相对孔径非制冷红外光学系统无热化设计[J].光学仪器,2015,37(4): 319-323.

    LI L,MEN K N M L,XIE X P,et al.. The optical design of the uncooled infrared thermal detection device[J]. Optial instruments,2015,37(4): 319-323.(in Chinese)

[6] 徐大维.基于车载红外系统的无热化设计[D].长春: 长春理工大学,2012: 1-50.

    XU D X. Optical design of athermalized vehicle-based infrared system[D]. Changchun: Changchun University of Science and Technology,2012: 1-50.(in Chinese)

[7] 徐大维,向阳,王健,等.折衍混合车载红外镜头无热化设计[J].红外技术,2011,33(8): 460-464.

    XU D X,XIANG Y,WANG J,et al.. Design on athermal refractive-diffractive hybrid vehicular infrared lens[J]. Infrared Technology,2011,33(8): 460-464.(in Chinese)

[8] 杨建峰,阮萍,常凌颖,等.高温电视摄像镜头设计[J].光子学报,2005,(7): 1081-1085.

    YANG J F,RUAN P,CHANG L Y,et al.. Design of high-temperature TV camera[J]. Acta Photonica Sinica,2005,(7): 1081-1085.(in Chinese)

[9] 杨小儒,张良,王希军,等.一种高分辨率短波红外宽温度范围被动消热差光学系统[J].激光与光电子学进展,2012,49(1): 129-132.

    YANG X R,ZHANG L,WANG X J,et al.. A high resolution shortwave infrared passive athermalization system with wide temperature range[J]. Laser & Optoelectronics Progress,2012,49(1): 129-132.(in Chinese)

[10] 沈宏海,王国华,王林杰,等.主动补偿无热化技术在机载红外光学系统中的应用[J].光学 精密工程,2010,18(3): 593-600.

    SHEN H H,WANG G H,WANG L J,et al.. Active compensation without thermalization technology in the application of the airborne infrared optical system[J]. Opt. Precision Eng.,2010,18(3): 593-600.(in Chinese)

[11] 程志峰,李明,程欣.可见光变焦镜头结构优化设计[J].中国光学,2012,5(02): 154-160.

    CHENG ZH F,LI M,CHENG X. Optimal structure design of visible zoom lens[J]. Chinese Optics,2012,5(2): 154-160.(in Chinese)

[12] 瞿伟,刘卫林,刘银辉.长焦距变焦镜头的温度分析及补偿[J].应用光学,2015,36(5): 717-722.

    ZHAI W,LIU W L,LIU Y H. Thermal analysis and compensation of long zoom lens[J]. Journal of Applied Optics,2015,36(5): 717-722.(in Chinese)

[13] 徐新行,李莹.可见光电视用高精度小体积调焦平台的设计[J].光学 精密工程,2017,25(6): 1526-1533.

    XU X X,LI Y. Design of focusing mechanism with high precision and small volume for visible light television system[J]. Opt. Precision Eng.,2017,25(6): 1526-1533.(in Chinese)

[14] 王红,田铁印.5倍变焦距光学系统小型化设计[J].中国光学,2014,7(2): 315-319.

    WANG H,TIAN T Y. Miniature design of 5 x zoom optical system[J]. Chinese Optics,2014,7(2): 315-319.(in Chinese)

[15] 范磊,张景旭,赵勇志,等.中型主镜的柔性半运动学支撑[J].光学 精密工程,2016,24(8): 1965-1972.

    FAN L,ZHANG J X,ZHAO Y Z,et al.. Flexible semi-kinematic support for middling primary mirror[J]. Opt. Precision Eng.,2016,24(8): 1965-1972.(in Chinese)

[16] 王忠素,吴清文,郭权峰,等.空间光学载荷探测器组件抗冲击隔振设计[J].光学 精密工程,2017,25(8): 2098-2105.

    WANG ZH S,WU Q W,GUO Q F,et al.. Design of anti-shock vibration isolation for detector module of space optics load[J]. Opt. Precision Eng.,2017,25(8): 2098-2105.(in Chinese)

李响, 柳鸣, 王超, 李小明, 张家齐, 白杨杨, 孟立新, 张立中. 移动地面站宽温度跟瞄系统信标接收镜头[J]. 中国光学, 2018, 11(5): 790. LI Xiang, LIU Ming, WANG Chao, LI Xiao-ming, ZHANG Jia-qi, BAI Yang-yang, MENG Li-xin, ZHANG Li-zhong. Wide temperature range beacon receiver lens for tracking and aiming system of mobile ground station[J]. Chinese Optics, 2018, 11(5): 790.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!