激光与光电子学进展, 2018, 55 (7): 070602, 网络出版: 2018-07-20   

应用低温等离子体技术的多环减敏型FBG应变传感器 下载: 562次

Multi-Loop Desensitization Fiber Bragg Grating Strain Sensors Using Low Temperature Plasma Technology
作者单位
江南大学物联网工程学院, 江苏 无锡 214000
摘要
为了满足对船舶、桥梁、飞行器等的关键结构进行较大应变范围测量的需要,设计了一种应用低温等离子体技术的多环减敏型光纤布拉格光栅(FBG)应变传感器。对长为30 mm的三环减敏应变基片进行有限元分析,在传感器结构左右端面上各施加0.083 mm的位移,经计算可得,栅区的应变约为1700 με,结构的减敏系数为2.91。在实验中设置两组传感器进行对照实验,采用低温等离子体技术对其中一组传感器的栅区表面进行扫描处理,另外一组栅区不做处理,验证两组传感器在+5000 με以内的传感特性。实验结果表明,等离子体放电扫描处理次数越多,光纤光功率越大。系统平均测量误差约50 με,满量程精度小于0.5%,解决了由于封装过程中栅区端面污染导致的系统标定结果不稳定、线性度差等问题。
Abstract
In order to meet the need of large strain range measurement on the key structures of ship, bridge, aircraft, and so on, we design a multi-loop desensitized fiber Bragg grating (FBG) strain sensor based on low temperature plasma. Finite element analysis of a tricyclic desensitized strain gauge substrate with a length of 30 mm is carried out with a displacement of 0.083 mm on each of the left and right end faces. After calculation, the strain in the gate region is about 1700 με and the desensitization coefficient of the structure is 2.91. Two contrast groups are adopted to verify the sensing characteristics within +5000 με; low temperature plasma is used to treat the gate region surface for one group sensor; while the other is set as default. The results show that the more times the plasma discharge treates the gate region surface, the larger the fiber optical power becomes. The average measurement error of the system is about 50 με, and the full-scale accuracy is less than 0.5%, which solves the problems of instability and poor linearity of the system calibration results caused by the pollution of the gate end face during the packaging process.
参考文献

[1] 谢涛, 王行, 李川, 等. 水银柱活塞差动式光纤布拉格光栅倾角传感器[J]. 光学学报, 2017, 37(3): 0306002.

    Xie T, Wang X, Li C, et al. Fiber Bragg grating differential tilt sensor based on mercury column piston structure[J]. Acta Optica Sinica, 2017, 37(3): 0306002.

[2] Li T L, Tan Y G, Han X, et al. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation[J]. Sensors, 2017, 17(12): 218.

[3] 覃荷瑛, 朱万旭, 张贺丽, 等. 内嵌预压式大量程光纤光栅传感器的智能钢绞线的研制与性能分析[J]. 中国激光, 2017, 44(4): 0410001.

    Qin H Y, Zhu W X, Zhang H L, et al. Manufacturing and performance analysis of intelligent steel strand embedded with prepressure large scale fiber Bragg grating sensor[J]. Chinese Journal of Lasers, 2017, 44(4): 0410001.

[4] Zhao Y, Yu C, Liao Y B. Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement[J]. Optics & Laser Technology, 2004, 36(1): 39-42.

[5] 全文文, 康娟, 阳丽, 等. 基于光纤布拉格光栅的金属梁杨氏模量的测量[J]. 激光与光电子学进展, 2016, 53(4): 040604.

    Quan W W, Kang J, Yang L, et al. Young′s modulus measurement of metal beams based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040604.

[6] 陈昊, 闫光, 庄炜, 等. 光纤光栅应变传感器预紧封装及传感特性研究[J]. 激光与红外, 2016, 46(9): 1128-1132.

    Chen H, Yan G, Zhuang W, et al. Research on preload package and sensing characteristics of fiber grating strain sensor[J]. Laser & Infrared, 2016, 46(9): 1128-1132.

[7] 覃荷瑛, 霍婷婷, 朱万旭. 螺旋倾斜复合技术对光纤布拉格光栅传感器的减敏作用[J]. 激光与光电子学进展, 2017, 54(3): 030601.

    Qin H Y, Huo T T, Zhu W X. Desensitization effect of helix-slant composite technology on fiber Bragg grating sensor[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030601.

[8] Xu M G, Reekie L, Chow Y T, et al. Optical in-fibre grating high pressure sensor[J]. Electronics Letters, 1993, 29(4): 398-399.

[9] 赵浩, 丁浩, 刘斌, 等. 载氢光纤光致折变布拉格光栅[J]. 光学学报, 1996, 16(4): 575-576.

    Zhao H, Ding H, Liu B, et al. Bragg gratings photoimprinted in hydrogen loaded optical fibers[J]. Acta Optica Sinica, 1996, 16(4): 575-576.

[10] 李凯, 辛璟焘, 夏嘉斌, 等. 基于电弧等离子体的光纤光栅快速退火的研究[J]. 激光技术, 2017, 41(5): 649-653.

    Li K, Xin J T, Xia J B, et al. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J]. Laser technology, 2017, 41(5): 649-653.

[11] Li J Z, Jiang D S. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Materials Research, 2006, 20(5): 518-522.

[12] Manière C, Pavia A, Durand L, et al. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process[J]. Journal of the European Ceramic Society, 2016, 36(3): 741-748.

[13] Kim K, Ahn H J, Lee J H, et al. Cellular membrane collapse by atmospheric-pressure plasma jet[J]. Applied Physics Letters, 2014, 104(1): 013701.

[14] 束德林. 工程材料力学性能[M]. 北京: 机械工业出版社, 2016: 60-200.

    Shu D L. Mechanical properties of engineering materials[M]. Beijing: Mechanical Industry Press, 2016: 60-200.

徐潇宇, 朱星盈, 肖少庆. 应用低温等离子体技术的多环减敏型FBG应变传感器[J]. 激光与光电子学进展, 2018, 55(7): 070602. Xu Xiaoyu, Zhu Xingying, Xiao Shaoqing. Multi-Loop Desensitization Fiber Bragg Grating Strain Sensors Using Low Temperature Plasma Technology[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070602.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!