基于LatLRR和PCNN的红外与可见光融合算法
[1] MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey [J]. Information Fusion, 2019, 45: 153-178.
[2] LIU Y, CHEN X, WANG Z F, et al. Deep learning for pixel-level image fusion: recent advances and future prospects [J]. Information Fusion, 2018, 42: 158-173.
[3] ZHANG P, YUAN Y C, FEI C, et al. Infrared and visible image fusion using co-occurrence filter [J]. Infrared Physics & Technology, 2018, 93: 223-231.
[4] LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation [J]. Information Fusion, 2015, 24: 147-164.
[5] 陈广秋, 高印寒, 才华, 等.局部化NSST与PCNN相结合的图像融合[J].液晶与显示, 2015, 30(4): 701-712.
[6] LIM W Q. The discrete shearlet transform: a new directional transform and compactly supported shearlet frames [J]. IEEE Transactions on Image Processing, 2010, 19(5): 1166-1180.
[7] LIU X B, MEI W B, DU H Q. Structure tensor and nonsubsampled shearlet transform based algorithm for CT and MRI image fusion [J]. Neurocomputing, 2017, 235: 131-139.
[8] CHENG B Y, JIN L X, LI G N. General fusion method for infrared and visual images via latent low-rank representation and local non-subsampled shearlet transform [J]. Infrared Physics & Technology, 2018, 92: 68-77.
[9] ZHAO J F, ZHOU Q, CHEN Y T, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition [J]. Infrared Physics & Technology, 2013, 56: 93-99.
[10] MA J L, ZHOU Z Q, BO W, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization [J]. Infrared Physics & Technology, 2017, 82: 8-17.
[11] FU Z Z, XUE W, XU J, et al. Infrared and visible images fusion based on RPCA and NSCT [J]. Infrared Physics & Technology, 2016, 77: 114-123.
[12] LIU Z W, FENG Y, ZHANG Y F, et al. A fusion algorithm for infrared and visible images based on RDU-PCNN and ICA-bases in NSST domain [J]. Infrared Physics & Technology, 2016, 79: 183-190.
[13] XU X Z, SHAN D, WANG G Y, et al. Multimodal medical image fusion using PCNN optimized by the QPSO algorithm [J]. Applied Soft Computing, 2016, 46: 588-595.
[14] LIU G C, YAN S C. Latent Low-Rank Representation for subspace segmentation and feature extraction [C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 1615-1622.
[15] 陈广秋, 高印寒, 段锦, 等.基于奇异值分解的PCNN红外与可见光图像融合[J].液晶与显示, 2015, 30(1): 126-136.
[16] XIANG T Z, YAN L, GAO R R. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain [J]. Infrared Physics & Technology, 2015, 69: 53-61.
[17] KONG W W, ZHANG L J, LEI Y. Novel fusion method for visible light and infrared images based on NSST-SF-PCNN [J]. Infrared Physics & Technology, 2014, 65: 103-112.
[18] LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network [J]. Information Fusion, 2017, 36: 191-207.
[19] MA J Y, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization [J]. Information Fusion, 2016, 31: 100-109.
[20] YIN H P, LI Y X, CHAI Y, et al. A novel sparse-representation-based multi-focus image fusion approach [J]. Neurocomputing, 2016, 216: 216-229.
谢艳新. 基于LatLRR和PCNN的红外与可见光融合算法[J]. 液晶与显示, 2019, 34(4): 423. XIE Yan-xin. Infrared and visible fusion algorithm based on latLRR and PCNN[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 423.