红外与毫米波学报, 2017, 36 (6): 660, 网络出版: 2018-01-04  

空芯光子晶体光纤与单模光纤耦合优化及在拉曼气体检测中的应用

Optimized coupling loss between single mode fiber and hollow-core photonic crystal fiber for Raman gas detection
作者单位
南京工业大学, 电气工程与控制科学学院, 江苏 南京 211816
摘要
分析了由菲涅尔反射、中心点偏移引起的耦合损耗.提出了一种新的方法——用T型金属管作为光子晶体光纤和单模光纤的连接器.计算了从单模光纤到光子晶体光纤方向以及从光子晶体光纤到单模光纤方向的最佳耦合距离, 分别为15 μm和25 μm, 实验证明了结论的可靠性.与传统的检测方法相比, 采用光子晶体光纤的检测方法使得拉曼信号得到明显增强. 以氮气为背景气, 采用氧气肯定了光子晶体光纤同拉曼检测技术相结合后在气体检测方向的应用前景.
Abstract
In this investigation, the coupling losses caused by Fresnel reflection, core misalignment between single mode fiber (SMF) and HC-PCF are analyzed. A novel solution proposed from this research will reduce the coupling losses by using a T-type tube as a connector. Meanwhile, the theoretically calculated optimized gaps are at 15 μm in SMF-HCPCF direction and 25 μm in HCPCF-SMF direction. Thus, an experiment has been carried out, and the results of the practical gap in the above mentioned two directions have also been obtained. Furthermore, compared with detection by traditional methods, the proposed new detection method with PCF can remarkably enhance the Raman spectroscopy signal. Finally, the prospect of using the combination of HC-PCF and Raman spectroscopy in gas-cell detection has been demonstrated by using oxygen and nitrogen.
参考文献

[1] Russell P. Photonic crystal fibers[J]. Science, 2007, 299(12):4729-4749.

[2] Wang E, Jiang H, Zhang J. Low-loss coupling between photonic crystal fibers and single-mode fibers[J]. Optik -International Journal for Light and Electron Optics, 2016, 127(11):4755-4757.

[3] Nicholson J W, Meng L, Desantolo A. Low-loss, low return-loss coupling between SMF and single-mode, hollow-core fibers using connectors[C]. Lasers and Electro-Optics. IEEE, 2014:1-2.

[4] XI Xiao-Ming , CHEN Zi-Lun, LIU Shi-Yao, et al. Coupling and fusion splicing of photonic crystal fiber with conventional fibers[J]. Laser Technology(奚小明, 陈子伦, 刘诗尧, 等. 光子晶体光纤与普通光纤的耦合熔接. 激光技术). 2011, 35(2):202-207.

[5] Couny F, Benabid F, Light P S. Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber[J]. IEEE Photonics Technology Letters, 2007, 19(13):1020-1022.

[6] HC-800B HC-PBF datasheet acquired in 2017.4.14. https://www.thorlabschina.cn/thorproduct.cfm partnumber=HC-800B.

[7] 780HP SMF datasheet acquired in 2017.4.14. https://www.thorlabschina.cn/thorproduct.cfm partnumber=780HP.

[8] Chow K K, Short M, Lam S, et al. A Raman cell based on hollow core photonic crystal fiber for human breath analysis[J]. Medical Physics, 2014, 41(9):092701.

[9] Benabid F, Knight J C, Antonopoulos G. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592):399-402.

[10] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers[J]. Nature, 2005, 434(7032):488-91.

[11] Li X, Liang J, Zimin Y, et al. U-Band wavelength references based on photonic bandgap fiber technology[J]. Journal of Lightwave Technology, 2011, 29(19):2934-2939.

[12] Parmar V, Bhatnagar R, Kapur P. Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber[J]. Optical Fiber Technology, 2013, 19(5):490-494.

[13] Farsinezhad S, Seraji F E. Analysis of Fresnel loss at splice joint between single-mode fiber and photonic crystal fiber[J]. International Journal of Optics, 2012, 2(1):17-21.

张秀梅, 蒋书波, 王旭. 空芯光子晶体光纤与单模光纤耦合优化及在拉曼气体检测中的应用[J]. 红外与毫米波学报, 2017, 36(6): 660. ZHANG Xiu-Mei, JIANG Shu-Bo, WANG Xu. Optimized coupling loss between single mode fiber and hollow-core photonic crystal fiber for Raman gas detection[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 660.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!