Photonic Sensors, 2018, 8 (2): 176, Published Online: Aug. 4, 2018  

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

Author Affiliations
Physics Department, Islamic University of Gaza, Gaza, 108, Palestine
Copy Citation Text

Alaa N. Abu HELAL, Sofyan A. TAYA, Khitam Y. ELWASIFE. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer[J]. Photonic Sensors, 2018, 8(2): 176.

References

[1] V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[2] H. M. Kullab, I. M. Qadoura, and S. A. Taya, “Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index,” Journal of Nano-and Electronic and Physics, 2015, 7(2): 1-6.

[3] H. Chen, B. I. Wu, and J. A. Kong, “Review of electromagnetic theory in left-handed materials,” Journal of Electromagnetic Waves & Applications, 2006, 20(15): 2137-2151.

[4] S. A. Taya, E. J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case,” Optik–Internal Journal for Light and Electron Optics, 2012, 123(24): 2264–2268.

[5] S. A. Taya and I. M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate,” Optik–Internal Journal for Light and Electron Optics, 2013, 124(13): 1431–1436.

[6] C. W. Qiu, L. W. Li, N. Burokur, and S. Zouhd, “Chiral nihility effects on energy flow in chiral materials,” Journal of the Optical Society of America A: Optics Image Science & Vision, 2008, 25(1): 55-63.

[7] S. A. Taya and K. Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer,” International Journal of Research & Reviews in Applied Sciences, 2012, 13(1): 294-305.

[8] S. A. Taya, K. Y. Elwasife, and H. M. Kullab, “Dispersion properties of anisotropic-metamaterial slab waveguide structure,” Optica Applicata, 2013, 43(4): 857–869.

[9] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.

[10] I. Qadoura, S. Taya, and K. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials,” International Journal of Microwave & Optical Technology, 2012, 7(5): 349-357.

[11] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[12] M. M. Abadla and S. A. Taya, “Characteristics of left-handed multilayer slab waveguide structure,” The Islamic University Journal (Series of Natural Studies and Engineering), 2011, 19(1): 57-70.

[13] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics-Condensed Matter, 1998, 1(22): 4785-4809.

[14] S. A. Taya, H. M. Kullab, and I. M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate,” Journal of the Optical Society of America B: Optical Physics, 2013, 30(7): 2008–2013.

[15] A. Gribe and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive index,” Applied Physics Letters, 2003, 82(12): 1815-1817.

[16] M. M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(3): 1401-1405.

[17] D. K. Qing and G. Chen, “Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability,” Applied Physics Letters, 2004, 84(5): 669-671.

[18] S. A. Taya and K. Y. Elwasife, “Field profile of asymmetric slab waveguide structure with LHM layers,” Journal Nano-and Electronic Physics, 2014, 6(2): 02007-1-02007-5.

[19] A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 72: 016623-1-016623-10.

[20] S. A. Taya, “Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide,” Optik–Internal Journal for Light and Electron Optics, 2015, 126(4): 1319–1323.

[21] S. A. Taya and D. M. Alamassi, “Reflection and transmission from left-handed material structures using Lorentz and Drude medium models,” Opto-Electronics Review, 2015, 23(3): 214–221.

[22] B. J. Lee, C. Fu, K. Park, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 1016-1023.

[23] R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(5514): 77-79.

[24] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, 2010, 328(5976): 337-339.

[25] L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Applied Physics Letters, 2010, 96(16): 164-165.

[26] Z. H. Zhang, Z. P. Wang, and L. H. Wang, “Design principle of single- or double-layer wave-absorbers containing left-handed materials,” Materials and Design, 2009, 30(9): 3908-3912.

[27] H. Kullab, S. Taya, and T. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer,” Journal of the Optical Society of America B: Optical Physics, 2102, 29(5): 959-964.

[28] H. M. Kullab and S. A. Taya, “Peak type metal-clad waveguide sensor using negative index materials,” AEU – Internayional Journal Electronics Communications, 2013, 67(11): 905–992.

[29] H. M. Kullab and S. A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor,” Optik – Internal Journal for Light and Electron Optics, 2014, 125(1): 97–100.

[30] S. A. Taya and H. M. Kullab, “Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials,” Applied Physics A, 2014, 116(4): 1841–1846.

[31] S. A. Taya, “Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor,” Opto-Electronics Review, 2014, 22(4): 252–257.

[32] S. A. Taya, “P-polarized surface waves in a slab waveguide with left-handed material for sensing applications,” Journal of Magnetism & Magnetic Materials, 2015, 377: 281–285.

[33] S. A. Taya, “Theoretical investigation of slab waveguide sensor using anisotropic metamaterials,” Optica Applicata, 2015, 45(3): 405–417.

[34] S. A. Taya, A. A. Jarada, and H. M. Kullab, “Slab waveguide sensor utilizing left-handed material core and substrate layers,” Optik–Internal Journal for Light and Electron Optics, 2016, 127(19): 7732–7739.

[35] S. A. Taya, S. S. Mahdi, A. A. Alkanoo, and I. M. Qadoura, “Slab waveguide with conducting interfaces as an efficient optical sensor: TE case,” Optica Acta International Journal of Optics, 2017, 64(8): 836–843.

[36] S. A. Taya, S. A. Shaheen, and A. A. Alkanoo, “Photonic crystal as a refractometric sensor operated in reflection mode,” Superlattices and Microstructures, 2017, 101: 299-305.

[37] J. F. Dong and C. Xu, “Characteristics of guided modes in planner chiral nihility meta-material waveguides,” Progress In Electromagnetic Research B, 2009, 14: 107–126.

[38] P. Pelet and N. Engheta, “The theory of chirowaveguides,” IEEE Transactions on Antennas and Propagation, 1990, 38(1): 90-98.

[39] M. Oksanen, P. Kolivisto, and I. lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEEE Proceedings H-Microwaves, Antennas and Propagation, 1991, 138(4): 327-344.

[40] J. Xiao, K. Zhang, and L. Gong, “Field analysis of a general chiral planer waveguide,” International Journal of lnfrared and Millimeter Waves, 1997, 18(4): 939-948.

[41] M. Yokota and Y. Yamanaka, “Dispersion relation and field distribution for a chiral slab waveguide,” International Journal of Microwave and Optical Technology, 2006, 1: 623-627.

[42] R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Optics Express, 2010, 18(14): 553-567.

[43] J. F. Dong and J. Li, “Characteristics of guided modes in uniaxial chiral circular waveguides,” Progress In Electromagnetics Research, 2012, 124(124): 331-345.

Alaa N. Abu HELAL, Sofyan A. TAYA, Khitam Y. ELWASIFE. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer[J]. Photonic Sensors, 2018, 8(2): 176.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!