Photonic Sensors, 2018, 8 (2): 176, Published Online: Aug. 4, 2018  

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

Author Affiliations
Physics Department, Islamic University of Gaza, Gaza, 108, Palestine
Abstract
The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.
References

[1] V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[2] H. M. Kullab, I. M. Qadoura, and S. A. Taya, “Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index,” Journal of Nano-and Electronic and Physics, 2015, 7(2): 1-6.

[3] H. Chen, B. I. Wu, and J. A. Kong, “Review of electromagnetic theory in left-handed materials,” Journal of Electromagnetic Waves & Applications, 2006, 20(15): 2137-2151.

[4] S. A. Taya, E. J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case,” Optik–Internal Journal for Light and Electron Optics, 2012, 123(24): 2264–2268.

[5] S. A. Taya and I. M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate,” Optik–Internal Journal for Light and Electron Optics, 2013, 124(13): 1431–1436.

[6] C. W. Qiu, L. W. Li, N. Burokur, and S. Zouhd, “Chiral nihility effects on energy flow in chiral materials,” Journal of the Optical Society of America A: Optics Image Science & Vision, 2008, 25(1): 55-63.

[7] S. A. Taya and K. Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer,” International Journal of Research & Reviews in Applied Sciences, 2012, 13(1): 294-305.

[8] S. A. Taya, K. Y. Elwasife, and H. M. Kullab, “Dispersion properties of anisotropic-metamaterial slab waveguide structure,” Optica Applicata, 2013, 43(4): 857–869.

[9] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.

[10] I. Qadoura, S. Taya, and K. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials,” International Journal of Microwave & Optical Technology, 2012, 7(5): 349-357.

[11] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[12] M. M. Abadla and S. A. Taya, “Characteristics of left-handed multilayer slab waveguide structure,” The Islamic University Journal (Series of Natural Studies and Engineering), 2011, 19(1): 57-70.

[13] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics-Condensed Matter, 1998, 1(22): 4785-4809.

[14] S. A. Taya, H. M. Kullab, and I. M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate,” Journal of the Optical Society of America B: Optical Physics, 2013, 30(7): 2008–2013.

[15] A. Gribe and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive index,” Applied Physics Letters, 2003, 82(12): 1815-1817.

[16] M. M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(3): 1401-1405.

[17] D. K. Qing and G. Chen, “Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability,” Applied Physics Letters, 2004, 84(5): 669-671.

[18] S. A. Taya and K. Y. Elwasife, “Field profile of asymmetric slab waveguide structure with LHM layers,” Journal Nano-and Electronic Physics, 2014, 6(2): 02007-1-02007-5.

[19] A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 72: 016623-1-016623-10.

[20] S. A. Taya, “Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide,” Optik–Internal Journal for Light and Electron Optics, 2015, 126(4): 1319–1323.

[21] S. A. Taya and D. M. Alamassi, “Reflection and transmission from left-handed material structures using Lorentz and Drude medium models,” Opto-Electronics Review, 2015, 23(3): 214–221.

[22] B. J. Lee, C. Fu, K. Park, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 1016-1023.

[23] R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(5514): 77-79.

[24] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, 2010, 328(5976): 337-339.

[25] L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Applied Physics Letters, 2010, 96(16): 164-165.

[26] Z. H. Zhang, Z. P. Wang, and L. H. Wang, “Design principle of single- or double-layer wave-absorbers containing left-handed materials,” Materials and Design, 2009, 30(9): 3908-3912.

[27] H. Kullab, S. Taya, and T. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer,” Journal of the Optical Society of America B: Optical Physics, 2102, 29(5): 959-964.

[28] H. M. Kullab and S. A. Taya, “Peak type metal-clad waveguide sensor using negative index materials,” AEU – Internayional Journal Electronics Communications, 2013, 67(11): 905–992.

[29] H. M. Kullab and S. A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor,” Optik – Internal Journal for Light and Electron Optics, 2014, 125(1): 97–100.

[30] S. A. Taya and H. M. Kullab, “Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials,” Applied Physics A, 2014, 116(4): 1841–1846.

[31] S. A. Taya, “Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor,” Opto-Electronics Review, 2014, 22(4): 252–257.

[32] S. A. Taya, “P-polarized surface waves in a slab waveguide with left-handed material for sensing applications,” Journal of Magnetism & Magnetic Materials, 2015, 377: 281–285.

[33] S. A. Taya, “Theoretical investigation of slab waveguide sensor using anisotropic metamaterials,” Optica Applicata, 2015, 45(3): 405–417.

[34] S. A. Taya, A. A. Jarada, and H. M. Kullab, “Slab waveguide sensor utilizing left-handed material core and substrate layers,” Optik–Internal Journal for Light and Electron Optics, 2016, 127(19): 7732–7739.

[35] S. A. Taya, S. S. Mahdi, A. A. Alkanoo, and I. M. Qadoura, “Slab waveguide with conducting interfaces as an efficient optical sensor: TE case,” Optica Acta International Journal of Optics, 2017, 64(8): 836–843.

[36] S. A. Taya, S. A. Shaheen, and A. A. Alkanoo, “Photonic crystal as a refractometric sensor operated in reflection mode,” Superlattices and Microstructures, 2017, 101: 299-305.

[37] J. F. Dong and C. Xu, “Characteristics of guided modes in planner chiral nihility meta-material waveguides,” Progress In Electromagnetic Research B, 2009, 14: 107–126.

[38] P. Pelet and N. Engheta, “The theory of chirowaveguides,” IEEE Transactions on Antennas and Propagation, 1990, 38(1): 90-98.

[39] M. Oksanen, P. Kolivisto, and I. lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEEE Proceedings H-Microwaves, Antennas and Propagation, 1991, 138(4): 327-344.

[40] J. Xiao, K. Zhang, and L. Gong, “Field analysis of a general chiral planer waveguide,” International Journal of lnfrared and Millimeter Waves, 1997, 18(4): 939-948.

[41] M. Yokota and Y. Yamanaka, “Dispersion relation and field distribution for a chiral slab waveguide,” International Journal of Microwave and Optical Technology, 2006, 1: 623-627.

[42] R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Optics Express, 2010, 18(14): 553-567.

[43] J. F. Dong and J. Li, “Characteristics of guided modes in uniaxial chiral circular waveguides,” Progress In Electromagnetics Research, 2012, 124(124): 331-345.

Alaa N. Abu HELAL, Sofyan A. TAYA, Khitam Y. ELWASIFE. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer[J]. Photonic Sensors, 2018, 8(2): 176.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!