红外与激光工程, 2018, 47 (6): 0624001, 网络出版: 2018-09-08   

全Stokes偏振关联成像技术研究

Full Stokes polarization correlated imaging
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学 环境科学与光电技术学院, 安徽 合肥 230026
3 中国科学院光束控制重点实验室, 四川 成都 610209
摘要
近年来, 随着关联成像技术的高速发展, 已被广泛应用于诸多领域内, 并引起了高度关注。偏振探测技术能够区分不同材质物体, 可以增强系统的探测识别能力。文中结合偏振探测和关联成像技术的优点, 利用Walsh-Hadamard散斑对场景进行照明, 并对场景反射光进行分时偏振探测, 实现了对场景的全Stokes偏振关联成像。搭建相应的实验系统对多材质物体进行了成像实验, 利用不同偏振探测信号与照明散斑计算并获得了物体的Stokes参数图像, 实现了对同一场景中的不同材质物体和相同材质不同结构物体的区分。通过演化压缩采样复原技术, 在不同采样率下对物体图像进行了复原, 结果表明: 演化压缩采样复原技术能在较低的采样率下, 复原出清晰的场景全偏振信息。
Abstract
In recent years, with the rapid development of associated imaging technology, it has been widely applied in many fields and has attracted great attention. The polarization detection technology can distinguish different material objects and enhance the system ability of detecting and identifying. In this paper, with the advantages of polarization detection techniques and associated imaging techniques, the Walsh-Hadamard speckle was used to illuminate the scene, the scene reflection light was detected by time-sharing polarization, and the full Stokes polarization correlation imaging of the scene was realized. The corresponding experimental system was set up, and the imaging experiments of multi-material objects were carried out. Using the signals of different polarization states and illumination speckles, the Stokes parameters images of objects were obtained by calculating. The distinguish of different material objects and the objects with the same material and different structures in the same scene were realized. Through the evolutionary compression sampling recovery technology, the images were restored at different sampling ratios. The results show that the evolutionary compression sampling recovery technology can restore clear full polarization information at a lower sampling rate.
参考文献

[1] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5): 285-289.

[2] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.

[3] Soldevila F, Clemente P, Tajahuerce E, et al. Computational imaging with a balanced detector[J]. Scientific Reports, 2016, 6: 29181.

[4] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

[5] Khamoushi S M M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 2015, 40(15): 3452-3455.

[6] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015, 6: 6225.

[7] 陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002.

    Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device[J].Acta Optica Sinica, 2011, 31(7): 0711002. (in Chinese)

[8] 李明飞, 莫小范, 赵连洁, 等. 基于 Walsh-Hadamard 变换的单像素遥感成像[J]. 物理学报, 2016, 65(6): 064201.

    Li Mingfei, Mo Xiaofan, Zhao Lianjie, et al. Single-pixel remote imaging based on walsh-hadamard transform[J]. Acta Physica Sinica, 2016, 65(6): 064201. (in Chinese)

[9] Breugnot S, Clemenceau P. Modeling and performance of a polarization active imager at λ=806 nm[C]//AeroSense′99. International Society for Optics and Photonics, 1999: 1286140.

[10] Chun C S L, Sadjadi F A. Polarimetric laser radar target classification[J]. Optics Letters, 2005, 30(14): 1806-1808.

[11] 于慧, 张瑞, 李克武, 等. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真[J]. 物理学报, 2017, 66(5): 054201.

    Yu Hui, Zhang Rui, Li Kewu, et al. Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform[J]. Acta Physica Sinica, 2017, 66(5): 054201. (in Chinese)

[12] 李杰, 朱京平, 齐春, 等. 静态傅里叶变换超光谱全偏振成像技术[J]. 物理学报, 2013, 62(4): 044206.

    Li Jie, Zhu Jingping, Qi Chun, et al. Static Fourier-transform hyperspectral imaging full polarimetry[J]. Acta Physica Sinica, 2013, 62(4): 044206. (in Chinese)

[13] 刘必鎏, 时家明, 赵大鹏, 等. 红外偏振探测的机理[J]. 红外与激光工程, 2008, 37(5): 777-781.

    Liu Biliu, Shi Jiaming, Zhao Dapeng, et al. Mechanism of infrared polarization detection[J]. Infrared and Laser Engineering, 2008, 37(5): 777-781. (in Chinese)

[14] 李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学, 2013, 6(6): 803-809.

    Li Shujun, Jiang Huilin, Zhu Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese)

[15] 郭树旭, 张驰, 曹军胜, 等. 基于压缩感知归一化关联成像实现目标重构[J]. 光学 精密工程, 2015, 23(1): 288-294.

    Guo Shuxu, Zhang Chi, Cao Junsheng, et al. Object reconstruction by compressive sensing based on normalized ghost imaging[J]. Optics and Precision Engineering, 2015, 23(1): 288-294. (in Chinese)

[16] 李宇波, 张鹏, 曾宇骁, 等. 基于电光调制器的全 Stokes 矢量的遥感测量[J]. 红外与激光工程, 2010, 39(2): 335-339.

    Li Yubo, Zhang Peng, Zeng Yuxiao, et al. Remote sensing measurement by full-Stokes-vector based on opto-electronic modulator[J]. Infrared and Laser Engineering, 2010, 39(2): 335-339. (in Chinese)

[17] Liu Y X, Shi J H, Zeng G H, Single-photon-counting polarization ghost imaging[J]. Appl Optics, 2016, 55: 10347-10351.

[18] Welsh S S, Edgar M P, Bowman R, et al. Near video-rate linear Stokes imaging with single-pixel detectors[J]. Journal of Optics, 2015, 17(2): 025705.

[19] Shi D, Hu S, Wang Y. Polarimetric ghost imaging[J]. Optics Letters, 2014, 39(5): 1231-1234.

[20] Shi D F, Wang F, Jian H, et al. Compressed polarimetric ghost imaging of different material′s reflective objects[J]. Optical Review, 2015, 22(6): 882-887.

张家民, 时东锋, 黄见, 王英俭. 全Stokes偏振关联成像技术研究[J]. 红外与激光工程, 2018, 47(6): 0624001. Zhang Jiamin, Shi Dongfeng, Huang Jian, Wang Yingjian. Full Stokes polarization correlated imaging[J]. Infrared and Laser Engineering, 2018, 47(6): 0624001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!