激光与光电子学进展, 2016, 53 (8): 080603, 网络出版: 2016-08-11   

部分相干高斯脉冲在大气湍流中展宽特性的研究 下载: 536次

Study on Broadening Characteristics of Partially Coherent Gaussian Pulse in Atmospheric Turbulence
作者单位
西安理工大学自动化与信息工程学院, 陕西 西安 710048
摘要
脉冲展宽问题对无线光通信系统的码间串扰影响很大。根据广义惠更斯-菲涅耳原理和修正冯·卡门谱模型,对部分相干高斯-谢尔模型脉冲(GSMP)光束在大气湍流中水平传输时的脉冲展宽问题进行了详细的数值分析。推导出了部分相干GSMP光束在大气湍流中频域和时域的平均光强表达式及脉冲展宽表达式。结果表明:部分相干GSMP光束的扩展受湍流的影响比完全相干GSMP光束受到的影响要小,束腰半径越小的光束受到湍流的影响越大。在频域中,相同的传输条件下,湍流越强且外尺度越大,GSMP光束的展宽效应越明显;在时域中,随着初始脉宽的增加,接收端的相对脉宽迅速减小,在40 fs之内,相对脉宽很明显,大于40 fs时,接收端的脉冲宽度与初始脉宽无明显差别。
Abstract
Pulse broadening has a great influence on the increase of inter symbol interference of wireless optical communication system. Based on the generalized Huygens-Fresnel principle and the modified von Karman spectrum model, a detailed numerical analysis on pulse broadening of the partially coherent Gaussian Schell model pulse (GSMP) beam propagation in atmospheric turbulence is discussed. The analytic expressions of the mean intensity and the pulse broadening of the partially coherent GSMP beam propagating in atmospheric turbulence in frequency domain and time domain are derived. The results indicate that the partially coherent GSMP beam is less affected by turbulence than the fully coherent GSMP beam, and that the smaller the partially coherent beam waist radius is, the more serious the beam is affected by turbulence. In the frequency domain, under the same propagation condition, the stronger the turbulence and the bigger the outer scale is, the more obvious the GSMP beams broadening effect is. In the time domain, with the increase of the initial pulse width, the relative pulse width at the receiver ending decreases rapidly. Within 40 femtoseconds, the relative pulse width is very obvious. With more than 40 femtoseconds, there is no significant difference between the pulse width on the receiver and the initial pulse width.
参考文献

[1] Sereda L, Bertolotti M, Ferrari A. Coherence properties of nonstationary light wave fields[J]. Journal of the Optical Society of America A, 1998, 15(3): 695-705.

[2] Gozani J. Pulsed beam propagation through random media[J]. Optics Letters, 1996, 21(21): 1712-1714.

[3] 邹其徽, 吕百达. 超短脉冲贝塞尔-高斯光束在自由空间的传输特性[J]. 强激光与粒子束, 2005, 17(12): 1769-1772.

    Zou Qihui, Lü Baida. Propagation properties of ultrashort pulsed Bessel-Gauss beams in free space[J]. High Power Laser and Particle Beams, 2005, 17(12): 1769-1772.

[4] Sheppard C J R. Generalized Bessel pulse beams[J]. Journal of the Optical Society of America A, 2002,19(11): 2218-2222.

[5] 季小玲, 汤明玥, 张涛. 超短脉冲厄米-高斯光束在湍流大气中的光谱移动和光谱跃变[J]. 物理学报, 2007, 56(7): 4281-4287.

    Ji Xiaoling, Tang Mingyue, Zhang Tao. Spectral shift and spectral transition of ultrashort pulsed Hermite-Gaussian beams in the turbulent atmosphere[J]. Acta Physica Sinica, 2007, 56(7): 4281-4287.

[6] Lajunen H, Vahimaa P, Tervo J. Theory of spatially and spectrally partially coherent pulses[J]. Journal of the Optical Society of America A, 2005, 22(8): 1536-1545.

[7] 丁超亮, 吕百达. 部分空间和部分光谱相干高斯-谢尔模型脉冲光束在自由空间中的光谱和时间特性[J]. 强激光与粒子束, 2008, 20(11): 1855-1860.

    Ding Chaoliang, Lü Baida. Spectral and temporal properties of spatially and spectrally partially coherent Gaussian Schell-model pulsed beams in free space[J]. High Power Laser and Particle Beams, 2008, 20(11): 1855-1860.

[8] Li Yaqing, Wu Zhensen, Wang Mingjun. Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence[J]. Chinese Physics B, 2014, 23(6): 064216.

[9] 王惠琴, 王彦刚, 曹明华. 沙尘天气下能见度对光脉冲时延和展宽的影响[J]. 光学学报, 2015, 35(7): 0701002.

    Wang Huiqin, Wang Yangang, Cao Minghua, et al. Influence of atmospheric visibility on laser pulse delay and broadening in sand and dust weather[J]. Acta Optica Sinica, 2015, 35(7): 0701002.

[10] 邢松龄, 刘磊, 邹贵生, 等. 飞秒激光参数对石英玻璃微孔加工的影响[J]. 中国激光, 2015, 42(4): 0403001.

    Xing Songling, Liu Lei, Zou Guisheng, et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese J Lasers, 2015, 42(4): 0403001.

[11] 张旭升, 郭亮, 黄勇, 等. 各向异性散射介质中高斯脉冲激光的回波特性[J]. 中国激光, 2015, 42(8): 0802003.

    Zhang Xusheng, Guo Liang, Huang Yong, et al. Echo characteristic of Gaussian pulse laser in anisotropic scattering medium[J]. Chinese J Lasers, 2015, 42(8): 0802003.

[12] 王昌雷, 梁铁柱, 武帅, 等. 基于飞秒脉冲的超宽带谐波混频微波测试[J]. 激光与光电子学进展, 2015, 52(9): 093201.

    Wang Changlei, Liang Tiezhu, Wu Shuai, et al. Ultra-wideband harmonic mixing for microwave measurement based on femtosecond pulses[J]. Laser & Optoelectronics Progress, 2015, 52(9): 093201.

[13] Ishimaru A. Temporal frequency spectra of multifrequency waves in turbulent atmosphere[J]. IEEE Transactions on Antennas and Propagation, 1972, 20(1): 10-19.

[14] Fante R L. Two-position, two-frequency mutual-coherence function in turbulence[J]. Journal of the Optical Society of America, 1981, 71(12): 1446-1451.

[15] Young C Y, Andrews L C, Ishimaru A. Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: An analytic solution[J]. Applied Optics, 1988, 37(33): 7655-7660.

柯熙政, 张焕杰. 部分相干高斯脉冲在大气湍流中展宽特性的研究[J]. 激光与光电子学进展, 2016, 53(8): 080603. Ke Xizheng, Zhang Huanjie. Study on Broadening Characteristics of Partially Coherent Gaussian Pulse in Atmospheric Turbulence[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080603.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!