半导体光电, 2018, 39 (6): 836, 网络出版: 2019-01-10  

一维单晶TiO2纳米棒薄膜的形态及光学性能研究

Morphology and Optical Properties of One-Dimensional Single Crystal TiO2 Nanorods Thin Films
作者单位
1 河南科技大学 材料科学与工程学院
2 河南省有色金属材料科学与加工技术重点实验室
3 有色金属共性技术河南省协同创新中心, 河南 洛阳 471023
摘要
一维TiO2纳米材料良好的电子传输特性为有效提高钙钛矿太阳电池等新型太阳电池的光电性能提供了理论基础。采用水热法在FTO上制备了垂直定向生长的一维单晶金红石相TiO2纳米棒薄膜; 利用XRD、SEM、UV-Vis、TEM和SAED对样品进行了表征; 研究了钛酸丁酯的用量和水热反应次数对纳米棒薄膜的形态和光学性能的影响。结果表明, 在水∶浓盐酸∶钛酸丁酯=30∶30∶1(体积比)和循环水热反应2次时, 得到均匀致密且沿[001]晶向定向生长的一维单晶TiO2纳米棒薄膜, 它在紫外光、可见光区的光吸收增强, 且带边红移, 禁带宽度为3.0eV。
Abstract
The good electron transport properties of one-dimensional TiO2 nanomaterials provide theoretical feasibility for effectively improving the photoelectric properties of new solar cells such as perovskite solar cells. In this paper, the vertically oriented one-dimensional single crystal rutile TiO2 nanorods thin films were prepared by hydrothermal method on FTO. The samples were characterized by XRD, SEM, UV-Vis, TEM and SAED. The effects of the amount of butyl titanate and the number of hydrothermal reaction on the morphology and optical properties of nanorods thin films were investigated. The results show that when the volume ratio of water, hydrochloric acid and butyl titanate is 30∶30∶1, under circulating hydrothermal reaction of two times, one-dimensional single crystal TiO2 nanorods thin films with uniformly dense and oriented crystal growth along the [001] orientation were obtained. The photoabsorption of the nanorods thin films in UV and visible regions was enhanced, the photoabsorption edge was red-shifted, and the band gap was 3.0eV.
参考文献

[1] Okamoto Y, Fukui R, Fukazawa M, et al. SrTiO3/TiO2 composite electron transport layer for perovskite solar cells[J]. Materials Lett., 2017, 187: 111-113.

[2] Wu W Q, Xu Y F, Su C Y, et al. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells[J]. Energy & Environmental Science, 2014, 7(2): 644-679.

[3] 王丽伟, 吴功伟, 黄仕华. 染料敏化太阳电池的光阳极制备及其性能优化[J]. 半导体光电, 2011, 32(2): 200-203, 291.

    Wang Liwei, Wu Gongwei, Huang Shihua. Fabrication and performance optimization of photoelectrodes for dye-sensitized solar cell[J]. Semiconductor Optoelectronics, 2011, 32(2): 200-203, 291.

[4] Krsko O, Plecenik T, Roch T, et al. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil[J]. Sensors and Actuators B: Chemical, 2017, 240: 1058-1065.

[5] Lin C T, Sopajaree K, Jitjanesuwan T, et al. Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols[J]. Separation & Purification Technol., 2018, 191: 233-243.

[6] Haider A J, Anbari R H A, Kadhim G R, et al. Exploring potential environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017, 119: 332-345.

[7] Sivakumar R, Ramkumar J, Shaji S, et al. Efficient TiO2 blocking layer for TiO2 nanorod arrays-based dye-sensitized solar cells[J]. Thin Solid Films, 2016, 615: 171-176.

[8] Govindaraj R, Santhosh N, Pandian M S, et al. Synthesis of nanocrystalline TiO2 nanorods via hydrothermal method: An efficient photoanode material for dye sensitized solar cells[J]. J. of Crystal Growth, 2017, 468: 125-128.

[9] Nyein N, Tan W K, Kawamura G, et al. TiO2 nanotube arrays formation in fluoride/ethylene glycol electrolyte containing LiOH or KOH as photoanode for dye-sensitized solar cell[J]. J. of Photochemistry & Photobiology A: Chemistry, 2017, 343: 33-39.

[10] Cirak B B, Karadeniz S M, Kilinc T, et al. Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages[J]. Vacuum, 2017, 144: 183-189.

[11] 胡 奔, 林 佳, 陈险峰. 二氧化钛纳米管染料敏化电池的制备和性能[J]. 半导体光电, 2012, 33(5): 648-650.

    Hu Ben, Lin Jia, Chen Xianfeng. Fabrication and performance study on dye-sensitized solar cells based on titania nanotube arrays[J].Semiconductor Optoelectronics,2012,33(5): 648-650.

[12] 曲兆娟, 季惠明, 徐明霞, 等. 无机液相源模板法制备TiO2纳米线及光催化性能[J]. 化学工业与工程, 2010, 27(3): 210-213.

    Qu Zhaojuan, Ji Huiming, Xu Mingxia, et al. Preparation and visible-light photocatalytic properties of titania nanowires by inorganic salt liquid source template method[J]. Chemical Industry and Engin., 2010, 27(3): 210-213.

[13] Liu J, Huo J C, Zhang M, et al. Branched TiO2 nanorod arrays owning the surface anatase/rutile junctions for dye sensitized solar cells[J]. Thin Solid Films, 2017, 623: 25-30.

[14] Mokhtar S M, Ahmad M K, Soon C F, et al. Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method[J]. Optik-Inter. J. for Light and Electron Opt., 2018, 154: 510-515.

[15] Ekar S U, Shekhar G, Khollam Y B, et al. Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods[J]. J. of Solid State Electrochemistry, 2017, 21(9): 2713-2718.

[16] Hosono E, Fujihara S, Kakiuchi K, et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions[J]. J. of the American Chemical Society, 2004, 126(25): 7790-7791.

邓亚丰, 李新利, 马战红, 明晓丽, 任凤章. 一维单晶TiO2纳米棒薄膜的形态及光学性能研究[J]. 半导体光电, 2018, 39(6): 836. DENG Yafeng, LI Xinli, MA Zhanhong, MING Xiaoli, REN Fengzhang. Morphology and Optical Properties of One-Dimensional Single Crystal TiO2 Nanorods Thin Films[J]. Semiconductor Optoelectronics, 2018, 39(6): 836.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!