量子电子学报, 2017, 34 (5): 616, 网络出版: 2017-10-30  

驻波场中囚禁离子的Wigner-Yanase偏态信息

Wigner-Yanase skew information of trapped ions in a standing-wave field
作者单位
江苏科技大学应用物理系, 江苏 镇江 212003
摘要
研究了驻波场中囚禁离子的Wigner-Yanase偏态信息并得到了其恢复周期,发现此周期与离子布居数反转的恢复时间相同。对解析解与数值模拟进行分析,发现 Wigner-Yanase偏态信息的恢复时间随Lamb-Dicke参数的增大而减小,随离子平均振动声子数的增大而增大;当离子质心从驻波场波节移向波腹时, Wigner-Yanase偏态 信息的恢复时间变长。从理论上证明了囚禁离子振动态处于相干态时离子初始偏态信息恒为1/2,分析了离子与驻波激光场之间的量子纠缠特性。
Abstract
The Wigner-Yanase skew information of trapped ions in a standing-wave field is investigated and the revival period is also obtained. It’s found that the period is the same as revival time of ion population inversion. The analytical solution and numerical simulation are analyzed. The revival period of Wigner-Yanase skew information is found to decrease with the increasing of Lamb-Dicke parameter, and increase with the increasing of ion mean vibration phonon number. The revival time will be longer when the ion mass center is moved from wave node to anti-node. It is theoretically proved that the initial state information of the ions is always 1/2 when vibration state of trapped ions is in coherent state. The characteristics of quantum entanglement between the ion and standing wave laser field are analyzed.
参考文献

[1] Wang Zhongjie, Fang Xu. Study on cross correlation function of vibrational modes of nonlinear trapped ions[J]. Laser Technology (激光技术), 2015, 39 (1) : 109-113 (in Chinese).

[2] He Yuehong, She Lei, Chen Yihe, et al. Design of optical system for trapped 199Hg+ in linear ion trap[J]. Journal of Applied Optics (应用光学), 2014, 35 (6): 976-980 (in Chinese).

[3] Lee Tony E, Alvarez-Rodriguez Unai, Cheng Xiaohang, et al. Tachyon physics with trapped ions[J]. Phys. Rev. A, 2015, 92(3): 032129.

[4] Schlawin F, Gessner M, Mukamel S, et al. Nonlinear spectroscopy of trapped ions[J]. Phys. Rev. A, 2014, 90(2): 023603.

[5] Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions[J]. Reviews of Modern Physics, 2013, 75(1): 281-324.

[6] Wineland D J. Superposition, entanglement, and raising Schrdinger′s cat[J]. Reviews of Modern Physics, 2013, 85(3): 1103-1114.

[7] Siverns J, Simkins Z, Weidt S, et al. On the application of radio frequency voltages to ion traps via helical resonators[J]. Applied Physics B, 2012, 107(4): 921-934.

[8] Chen Liang, Wan Wei, Xie Yi, et al. Microscopic surface-electrode ion trap for scalable quantum information processing[J]. Chinese Physics Letters, 2012, 29(3): 033701.

[9] Xie Yi, Wan Wei, Zhou Fei, et al. Linear ion trap imperfection and the compensation of excess micromotion[J]. Chinese Physics B, 2012, 21(6): 063201.

[10] Drakoudis A, Sollner M, Werth G. Instabilities of ion motion in a linear Paul trap[J]. International Journal of Mass Spectrometry, 2006, 252(1): 61-68.

[11] Vahala K, Herrmann M, Knun S. A phonon laser[J]. Nature Physics, 2009, 5(9): 682-686.

[12] Gerritsma R, Kirchmair G, Zahringer F, et al. Quantum simulation of the Dirac equation[J]. Nature, 2010, 463 (7277): 68-71.

[13] Barreiro J T, Muller M, Schindler P, et al. An open-system quantum simulator with trapped ions[J]. Nature, 2011, 470(7335): 486-491.

[14] Gerritsma R, Lanyon B P, Kirchmair G, et al. Quantum simulation of the Klein paradox[J]. Physical Review Letters, 2011, 10(6): 060503.

[15] Zahringer F, Kirchmair G, Gerritsma R, et al. Realiztion of a quantum walk with one and two trapped ions[J]. Physical Review Letters, 2010, 104 (10): 100503.

[16] Kim K, Chang M S, Korenblit S, et al. Nonlinear spectroscopy of trapped ions[J]. Nature, 2010, 465 (7298): 590-593.

[17] Lanyon B, Hempel C, Nigg D, et al. Universal digital quantum simulation with trapped ions[J]. Science, 2011, 334(6052): 57-61.

[18] Eichmann U, Bergquist J C, Bollinger J J, et al. Young interference experiment with light scattered from two atoms[J]. Physical Review Letters, 1993, 70(16): 2359-2362.

[19] Rowe M A, Kielpinski D, Meyer V, et al. Experimental violation of Bell’s inequality with efficient detection[J]. Nature, 2001, 409(6822): 791-794.

[20] Leibfried D, Knill E, Seidelin S, et al. Creation of a six-atom Schrdinger Cat state[J]. Nature, 2005, 438(7068): 639-642.

[21] Monz T, Schindler P, Barreiro J T, et al. 14-qubit entanglement: Creation and coherence[J]. Physical Review Letters, 2011, 10(13): 130506.

[22] Zheng S B. Fast scheme for the generation of entangled states of multiple hot trapped ions[J]. Physical Review A, 2002, 65: 051804(R).

[23] Zhu Xiaolong, Wu Gaofeng, Liu lin, et al. Statistical properties of a partially coherent radially polarized beam propagating through an astigmatic optical system[J]. Optics Communications, 2014, 31(7): 132-139.

[24] Wigner E P, Yanase M M. Information contents of ditributions[J]. Proceedings of the National Academy of Sciences, 1963, 49 (6): 910-918.

[25] Luo Shunlong. Wigner-Yanase skew information and uncertainty relations[J]. Physical Review Letters, 2003, 91(18): 180403.

[26] Liu Wanfang, Yin Xunchang, Zhang Lihua. Storage of maximal Wigner-Yanase skew information of two-qubit system using nonlinear interactions with decay[J]. International Journal of Theoretical Physics, 2011, 50: 3375-3384.

[27] Sun Honggui, Zhang Lihua, Liu Wanfang, et al. Maximal and total skew information of three-qubit system obtained using nonlinear interaction models[J]. Chinese Physics B, 2012, 21 (1): 1674.

[28] Vogel W, De Matos Filho R L. Nonlinear Jaynes-Cummings dynamics of a trapped ion[J]. Physical Review A, 1995, 52 (5): 4214.

[29] Wang Zhongqing Duan Changkui, An Guanglei. Nonlinear Jaynes-Cummings model of a trapped ion and the evolution of the ion population inversion[J]. Acta Physica Sinica (物理学报), 2006, 55 (7): 3438-3442 (in Chinese).

[30] Liu Wanfang, Yin Xunchang, Fu Jing, et al. Wigner-Yanase skew information in the process of spontaneous emission between two atomic levels[J]. Journal of Jilin University (Science Edition) (吉林大学学报理学版), 2015, 53 (3) : 542-54(in Chinese).

[31] Scully M O, Zubairy M S. Quantum Optics[M]. Cambridge: Cambridge University Press, 1997: 199-202.

[32] Gea-Banacloche Julio. Atom and field-state evolution in the Jaynes-Cummings model for large initial fields[J]. Physical Review A, 1991, 44 (9): 5913-5926.

[33] Eberly J H, Narozhny N B, Sanchez-Mondragon J J. Periodic spontaneous collapse and revival in a simple quantum model[J]. Physical Review Letters, 1980, 44 (20): 1323-1326.

[34] De Matos Filho R L, Vogel W. Second-sideband laser cooling and nonclassical motion of trapped ions[J]. Physical Review A, 1994, 50 (3): R1988.

白志达, 叶芳, 周青春. 驻波场中囚禁离子的Wigner-Yanase偏态信息[J]. 量子电子学报, 2017, 34(5): 616. BAI Zhida, YE Fang, ZHOU Qingchun. Wigner-Yanase skew information of trapped ions in a standing-wave field[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 616.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!