光学学报, 2021, 41 (1): 0130003, 网络出版: 2021-02-23   

高灵敏腔衰荡光谱技术及其应用研究 下载: 2132次特邀综述

Research of High Sensitivity Cavity Ring-Down Spectroscopy Technology and Its Application
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学工程科学学院, 安徽 合肥 230027
3 中国科学技术大学科学岛分院, 安徽 合肥 230031
4 东北大学信息科学与工程学院, 辽宁 沈阳 110000
引用该论文

刘文清, 王兴平, 马国盛, 刘英, 赵之豪, 李想, 邓昊, 陈兵, 阚瑞峰. 高灵敏腔衰荡光谱技术及其应用研究[J]. 光学学报, 2021, 41(1): 0130003.

Wenqing Liu, Xingping Wang, Guosheng Ma, Ying Liu, Zhihao Zhao, Xiang Li, Hao Deng, Bing Chen, Ruifeng Kan. Research of High Sensitivity Cavity Ring-Down Spectroscopy Technology and Its Application[J]. Acta Optica Sinica, 2021, 41(1): 0130003.

参考文献

[1] Gao K L, Duan A M, Chen D L, et al. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades[J]. Science Bulletin, 2019, 64(16): 1140-1143.

[2] Sastri A R, Christian J R, Achterberg E P, et al. Perspectives on in situ sensors for ocean acidification research[J]. Frontiers in Marine Science, 2019, 6: 653.

[3] Li S, Lucey P G, Milliken R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8907-8912.

[4] Wandt J, Lee J. Arrigan D W M, et al. Ionophore-assisted electrochemistry of neutral molecules: oxidation of hydrogen in an ionic liquid electrolyte[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6910-6914.

[5] 戚暨. 苯胺原位聚合法制备气敏织物及其气体传感性能研究[D]. 沈阳: 东北大学, 2013: 1- 12.

    QiJ. Preparation of gas sensitive fabrics through in situ polymerization of aniline and its gas sensing property[D]. Shenyang: Northeastern University, 2013: 1- 12.

[6] 孙静. 气相色谱-质谱联用技术研究进展及前处理方法综述[J]. 当代化工研究, 2017( 9): 4- 5.

    SunJ. Review of research progress and pretreatment methods of gas chromatography-mass spectrometry technology[J]. Modern Chemical Research, 2017( 9): 4- 5.

[7] Song K, Jung E C. Recent developments in modulation spectroscopy for trace gas detection using tunable diode lasers[J]. Applied Spectroscopy Reviews, 2003, 38(4): 395-432.

[8] 谈艳, 王进, 陶雷刚, 等. 光腔衰荡光谱方法测量分子的高精密谱线参数[J]. 中国激光, 2018, 45(9): 0911002.

    Tan Y, Wang J, Tao L G, et al. Precise parameters of molecular absorption lines from cavity ring-down spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911002.

[9] O'Keefe A. Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12): 2544-2551.

[10] Romanini D, Kachanov A A, Sadeghi N, et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264(3/4): 316-322.

[11] Chen H, Winderlich J, Gerbig C, et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 2010, 3(2): 375-386.

[12] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408.

[13] Butler T J, Miller J L. Orr-Ewing A J. Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction[J]. The Journal of Chemical Physics, 2007, 126(17): 174302.

[14] Butler T J, Mellon D, Kim J, et al. Optical-feedback cavity ring-down spectroscopy measurements of extinction by aerosol particles[J]. The Journal of Physical Chemistry A, 2009, 113(16): 3963-3972.

[15] Long D A, Wójtewicz S, Miller C E, et al. Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 35-40.

[16] Leshchishina O, Kassi S, Gordon I E, et al. High sensitivity CRDS of the a1Δg-X3∑g- band of oxygen near 1.27 μm: extended observations, quadrupole transitions, hot bands and minor isotopologues[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2236-2245.

[17] 刘古良. 光腔衰荡光谱法测量水分子及一氧化二氮分子的吸收光谱参数[D]. 合肥: 中国科学技术大学, 2019: 1- 14.

    Liu GL. Absorption spectral line parameters of water and nitrous oxide from cavity ring-down spectroscopy[D]. Hefei: University of Science and Technology of China, 2019: 1- 14.

[18] Sahay P, Scherrer S T, Wang C. Measurements of the weak UV absorptions of isoprene and acetone at 261--275 nm using cavity ringdown spectroscopy for evaluation of a potential portable ringdown breath analyzer[J]. Sensors (Basel), 2013, 13(7): 8170-8187.

[19] Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/ 12C for carbon dioxide in human breath[J]. Analytical Chemistry, 2002, 74(9): 2003-2007.

[20] Fritsch T, Hering P, Mürtz M. Infrared laser spectroscopy for online recording of exhaled carbon monoxide: a progress report[J]. Journal of Breath Research, 2007, 1(1): 014002.

[21] Stamyr K, Vaittinen O, Jaakola J, et al. Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy[J]. Biomarkers, 2009, 14(5): 285-291.

[22] Crawford T M. Error sources in the “ring down” optical cavity decay time mirror reflectometer[J]. Proceedings of SPIE, 1985, 0540: 295-302.

[23] Rao G N, Karpf A. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser[J]. Applied Optics, 2010, 49(26): 4906-4914.

[24] Huang K, Cassar N, Jonsson B, et al. An ultrahigh precision, high-frequency dissolved inorganic carbon analyzer based on dual isotope dilution and cavity ring-down spectroscopy[J]. Environmental Science & Technology, 2015, 49(14): 8602-8610.

[25] Dupré P. Photodissociation resonances of jet-cooled NO2 at the dissociation threshold by CW-CRDS[J]. The Journal of Chemical Physics, 2015, 142(17): 174305.

[26] Földes T, Lauzin C, Vanfleteren T, et al. High-resolution, near-infrared CW-CRDS, and ab initio investigations of N2O-HDO[J]. Molecular Physics, 2015, 113(5): 473-482.

[27] Campargue A, Kassi S, Mondelain D, et al. Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 152: 84-93.

[28] Richard L, Mondelain D, Kassi S, et al. Collision-induced absorption and electric quadrupole transitions of N2 by OF-CEAS near 4.0 μm and CRDS near 2.1 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 226: 138-145.

[29] Kassi S, Stoltmann T, Casado M, et al. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm[J]. The Journal of Chemical Physics, 2018, 148(5): 054201.

[30] Burkart J, Kassi S. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy[J]. Applied Physics B, 2015, 119(1): 97-109.

[31] Desbois T, Ventrillard I, Romanini D. Simultaneous cavity-enhanced and cavity ringdown absorption spectroscopy using optical feedback[J]. Applied Physics B, 2014, 116(1): 195-201.

[32] Levenson M D, Paldus B A, Spence T G, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical Physics Letters, 1998, 290(4/5/6): 335-340.

[33] 曹琳, 王春梅, 陈扬骎, 等. 光外差腔衰荡光谱理论研究[J]. 物理学报, 2006, 55(12): 6354-6359.

    Cao L, Wang C M, Chen Y Q, et al. Theoretical investigation of optical heterodyne cavity ring down spectroscopy[J]. Acta Physica Sinica, 2006, 55(12): 6354-6359.

[34] Silander I, Hausmaninger T, Axner O. Model for in-coupling of etalons into signal strengths extracted from spectral line shape fitting and methodology for predicting the optimum scanning range: demonstration of Doppler-broadened, noise-immune, cavity-enhanced optical heterodyne molecular spectroscopy down to 9×10 -14 cm -1[J]. Journal of the Optical Society of America B, 2015, 32(10): 2104-2114.

[35] Curtis E A, Barwood G P, Huang G, et al. Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection[J]. Journal of the Optical Society of America B, 2017, 34(5): 950-958.

[36] Zhao G, Hausmaninger T, Schmidt F M, et al. High resolution ultra-sensitive trace gas detection by use of cavity-position-modulated sub-Doppler NICE-OHMS-application to detection of acetylene in human breath[J]. Physics, 2018, 99(4): 779-791.

[37] 周月婷, 赵刚, 刘建鑫, 等. 基于NICE-OHMS技术进行大气压气样直接检测的理论分析[J]. 光谱学与光谱分析, 2020, 40(3): 706-711.

    Zhou Y T, Zhao G, Liu J X, et al. Theoretical analysis of direct measurement of atmospheric samples based on NICE-OHMS technology[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 706-711.

[38] Morville J, Romanini D, Kachanov A A, et al. Two schemes for trace detection using cavity ringdown spectroscopy[J]. Applied Physics B, 2004, 78(3/4): 465-476.

[39] Burkart J, Romanini D, Kassi S. Optical feedback frequency stabilized cavity ring-down spectroscopy[J]. Optics Letters, 2014, 39(16): 4695-4698.

[40] Burkart J, Romanini D, Kassi S. Optical feedback stabilized laser tuned by single-sideband modulation[J]. Optics Letters, 2013, 38(12): 2062-2064.

[41] Cygan A, Lisak D, Masłowski P, et al. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer[J]. The Review of Scientific Instruments, 2011, 82(6): 063107.

[42] Ehlers P, Johansson A C, Silander I, et al. Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy[J]. Journal of the Optical Society of America B, 2014, 31(12): 2938-2945.

[43] Silander I, Hausmaninger T, Ma W G, et al. Doppler-broadened mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometry based on an optical parametric oscillator for trace gas detection[J]. Optics Letters, 2015, 40(4): 439-442.

[44] Fleurbaey H, Yi H M, Adkins E M, et al. Cavity ring-down spectroscopy of CO2 near λ=2.06 μm: accurate transition intensities for the Orbiting Carbon Observatory-2 (OCO-2) “strong band”[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 252: 107104.

[45] LongD, ReedZ, FleisherA, et al., 2020, 47(5): e2019GL086344.

[46] Fleisher A J, Adkins E M, Reed Z D, et al. Twenty-five-fold reduction in measurement uncertainty for a molecular line intensity[J]. Physical Review Letters, 2019, 123(4): 043001.

[47] Yi H M, Liu Q N, Gameson L, et al. High-accuracy 12C 16O2 line intensities in the 2 μm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206: 367-377.

[48] Fleisher AJ, Long DA, Yi HM, et al. Accurate optical measurements of stable and radioactive carbon isotopologues of CO2[C]∥Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL), Singapore. Washington, D.C.: OSA, 2018: EW3A. 2.

[49] Ghysels M, Liu Q N, Fleisher A J, et al. A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600 nm region[J]. Applied Physics B, 2017, 123(4): 1-13.

[50] Reed ZD, Long DA, FleurbaeyH, et al. Comb-locked cavity-ringdown spectroscopy for molecular transition frequency measurements below 1×10 -12 relative uncertainty [C]∥Conference on Lasers and Electro-Optics, Washington, D.C. Washington, D.C.: OSA, 2020: SM1M. 4.

[51] Long D A, Fleisher A J, Liu Q, et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region[J]. Optics Letters, 2016, 41(7): 1612-1615.

[52] Fleisher AJ, Long DA, Liu QN, et al. Towards the robust trace detection of radiocarbon via linear absorption spectroscopy[C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, 2017: SF1M. 2.

[53] Fleisher A J, Long D A, Liu Q N, et al. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy[J]. The Journal of Physical Chemistry Letters, 2017, 8(18): 4550-4556.

[54] 戴东旭, 孙福革, 康路, 等. 高重复频率实时采集的光腔衰荡光谱[J]. 化学物理学报, 1997( 6): 481- 486.

    Dai DX, Sun FG, KangL, et al. A cavity ring down spectroscopic setup for high Rep.rate real time measurment[J]. Chinese Journal of Chemical Physics, 1997( 6): 481- 486.

[55] 赵东锋. 光腔衰荡光谱技术研究若干自由基的光谱[D]. 合肥: 中国科学技术大学, 2009: 1- 21.

    Zhao DF. Spectroscopy study of several free radicals by cavity ringdown[D]. Hefei: University of Science and Technology of China, 2009: 1- 21.

[56] Pan H, Cheng C F, Sun Y R, et al. Laser-locked, continuously tunable high resolution cavity ring-down spectrometer[J]. The Review of Scientific Instruments, 2011, 82(10): 103110.

[57] Gong Z Y, Sun M X, Wang C, et al. Optimization and evaluation of a breath acetone analyzer for diabetes diagnosis using cavity ringdown spectroscopy (CRDS) at 266 nm[J]. Diabetes Technology & Therapeutics, 2014, 16: A96-A97.

[58] Guo R M, Teng J H, Cao K, et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 2019, 27(22): 31850-31863.

[59] Wu H, Chen J, Liu A W, et al. Cavity ring-down spectroscopy measurements of ambient NO3 and N2O5[J]. Chinese Journal of Chemical Physics, 2020, 33(1): 1-7.

[60] Wu H, Stolarczyk N, Stolarczyk N, et al. Comb-locked cavity ring-down spectroscopy with variable temperature[J]. Optics Express, 2019, 27(26): 37559-37567.

[61] Hu C L, Perevalov V I, Cheng C F, et al. Optical-optical double-resonance absorption spectroscopy of molecules with kilohertz accuracy[J]. The Journal of Physical Chemistry Letters, 2020, 11(18): 7843-7848.

[62] Hua T P, Sun Y R, Wang J, et al. Frequency metrology of molecules in the near-infrared by NICE-OHMS[J]. Optics Express, 2019, 27(5): 6106-6115.

[63] 赵刚. 超灵敏噪声免疫腔增强光外差分子光谱系统的设计与优化[D]. 太原: 山西大学, 2018: 91- 99.

    ZhaoG. Design and optimization of ultrasensitive noise-immune cavity enhanced optical heterodyne molecular spectroscopy[D]. Taiyuan: Shanxi University, 2018: 91- 99.

[64] 马维光, 周月婷, 赵刚, 等. 噪声免疫腔增强光外差分子光谱技术综述[J]. 中国激光, 2018, 45(9): 0911007.

    Ma W G, Zhou Y T, Zhao G, et al. Review on noise immune cavity enhanced optical heterodyne molecular spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911007.

[65] 贾梦源, 赵刚, 侯佳佳, 等. 双重频率锁定的腔衰荡吸收光谱技术及信号处理[J]. 物理学报, 2016, 65(12): 128701.

    Jia M Y, Zhao G, Hou J J, et al. Research and data processing of double locked cavity ringdown absorption spectroscopy[J]. Acta Physica Sinica, 2016, 65(12): 128701.

[66] 贾梦源. 基于噪声免疫腔增强光外差分子光谱的痕量气体检测技术研究[D]. 太原: 山西大学, 2018: 31- 41.

    Jia MY. Investigation of trace gas detection based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy[D]. Taiyuan: Shanxi University, 2018: 31- 41.

[67] Zhou Y T, Liu J X, Guo S J, et al. Laser frequency stabilization based on a universal sub-Doppler NICE-OHMS instrumentation for the potential application in atmospheric lidar[J]. Atmospheric Measurement Techniques, 2019, 12(3): 1807-1814.

[68] Yang L, Lin H, Feng X J, et al. Saturation cavity ring-down spectrometry using a dynamical relaxation model[J]. Optics Express, 2019, 27(3): 1769-1776.

[69] Yang L, Lin H, Plimmer M D, et al. Measurement of the spectral line positions in the 2v3 R(6) manifold of methane[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245: 106888.

[70] 杨雷, 林鸿, 冯晓娟, 等. 光腔衰荡光谱仪测量甲烷2ν3带R1支光谱线型参数[J]. 光谱学与光谱分析, 2018, 38(S1): 299-300.

    Yang L, Lin H, Feng X J, et al. Lineshape parameter measurement of the 2ν3 R1 manifold of methane using cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(S1): 299-300.

[71] Zhou S, Han Y L, Li B C. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection[J]. Applied Physics B, 2018, 124(2): 1-8.

[72] 周胜, 韩艳玲, 李斌成. 5.2 μm量子级联激光器光腔衰荡光谱技术的痕量水汽检测[J]. 光谱学与光谱分析, 2016, 36(12): 3848-3852.

    Zhou S, Han Y L, Li B C. Trace moisture measurement with 5.2 μm quantum cascade laser based continuous-wave cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3848-3852.

[73] 周胜, 韩艳玲, 李斌成. 基于光腔衰荡光谱技术的压力计校准方法[J]. 光谱学与光谱分析, 2018, 38(4): 1031-1035.

    Zhou S, Han Y L, Li B C. Calibration method of pressure gauges based on cavity ring-down spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1031-1035.

[74] Qu Z C, Gao C M, Han Y L, et al. Detection of chemical warfare agents based on quantum cascade laser cavity ring-down spectroscopy[J]. Chinese Optics Letters, 2012, 10(5): 050102.

[75] 曲哲超, 李斌成, 韩艳玲. 基于量子级联激光器光腔衰荡光谱技术的痕量氨气检测[J]. 红外与毫米波学报, 2012, 31(5): 431-436.

    Qu Z C, Li B C, Han Y L. Cavity ring-down spectroscopy for trace ammonia detection[J]. Journal of Infrared and Millimeter Waves, 2012, 31(5): 431-436.

[76] Zhao T K, Qu Z C, Han Y L, et al. Two optical feedback schemes for cavity ring-down technique for high reflectivity measurements[J]. Chinese Physics Letters, 2010, 27(10): 100701.

[77] 高丽峰, 李斌成, 熊胜明. 光腔衰荡技术测中红外腔镜反射率的实验研究[J]. 中国激光, 2010, 37(4): 1078-1081.

    Gao L F, Li B C, Xiong S M. Experimental investigation of reflectivity measurement for cavity mirror at middle infrared by cavity ring-down spectroscopy[J]. Chinese Journal of Lasers, 2010, 37(4): 1078-1081.

[78] 高丽峰, 熊胜明, 李斌成, 等. 用光腔衰荡技术测量镜片的反射率[J]. 强激光与粒子束, 2005, 17(3): 335-338.

    Gao L F, Xiong S M, Li B C, et al. Analysis of reflectivity measurement by cavity ring-down spectroscopy[J]. High Power Laser & Particle Beams, 2005, 17(3): 335-338.

[79] Li Z Y, Hu R Z, Xie P H, et al. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3223-3236.

[80] 王丹, 胡仁志, 谢品华, 等. 基于腔衰荡光谱技术测量夜间大气中五氧化二氮[J]. 光学学报, 2017, 37(9): 0901001.

    Wang D, Hu R Z, Xie P H, et al. Measurement of nitrogen pentoxide in nocturnal atmospheric based on cavity ring-down spectroscopy[J]. Acta Optica Sinica, 2017, 37(9): 0901001.

[81] 胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱技术测量大气NO2[J]. 光学学报, 2016, 36(2): 0230006.

    Hu R Z, Wang D, Xie P H, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 2016, 36(2): 0230006.

[82] Jin H W, Hu R Z, Xie P H, et al. Study on the photoacoustic technology to simultaneous in situ detection of the cavity ring-down spectrum for multi-optical parameters[J]. IEEE Photonics Journal, 2020, 12(2): 1-11.

[83] Wang D, Hu R Z, Xie P H, et al. A novel calibration method for atmospheric NO3 radical via high reflectivity cavity[J]. Measurement Science and Technology, 2020, 31(8): 085801.

[84] 靳华伟, 胡仁志, 谢品华, 等. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究[J]. 物理学报, 2019, 68(7): 070703.

    Jin H W, Hu R Z, Xie P H, et al. Photo-acoustic technology applied to ppb level NO2 detection by using low power blue diode laser[J]. Acta Physica Sinica, 2019, 68(7): 070703.

[85] 林川, 胡仁志, 谢品华, 等. 基于热解腔衰荡光谱技术对二氧化氮和有机硝酸酯同步测量研究[J]. 光学学报, 2020, 40(12): 1201003.

    Lin C, Hu R Z, Xie P H, et al. Simultaneous measurement of nitrogen dioxide and organic nitrate based on thermal dissociation cavity ring-down spectroscopy[J]. Acta Optica Sinica, 2020, 40(12): 1201003.

[86] 吴盛阳, 胡仁志, 谢品华, 等. 基于腔衰荡光谱技术(CRDS)对大气总活性氮氧化物(NOy)的实时测量[J]. 光谱学与光谱分析, 2020, 40(6): 1661-1667.

    Wu S Y, Hu R Z, Xie P H, et al. Real-time measurement of NOy (total reactive nitrogen oxide) by cavity ring down spectrometer (CRDS)[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1661-1667.

[87] 王丹, 谢品华, 胡仁志, 等. 大气环境NO3自由基探测技术研究进展[J]. 大气与环境光学学报, 2015, 10(2): 102-116.

    Wang D, Xie P H, Hu R Z, et al. Progress of measurement of atmospheric NO3 radicals[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 102-116.

[88] Yuan F, Hu M, He Y B, et al. Development of an in situ analysis system for methane dissolved in seawater based on cavity ringdown spectroscopy[J]. Review of Scientific Instruments, 2020, 91(8): 083106.

[89] 袁峰, 高晶, 姚路, 等. 球载CRDS高灵敏度甲烷测量系统的研制[J]. 光学精密工程, 2020, 28(9): 1881-1892.

    Yuan F, Gao J, Yao L, et al. Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy[J]. Optics and Precision Engineering, 2020, 28(9): 1881-1892.

[90] Li Z Y, Xie P H, Hu R Z, et al. Observations of N2O5 and NO3 at a suburban environment in Yangtze River Delta in China: estimating heterogeneous N2O5 uptake coefficients[J]. Journal of Environmental Sciences, 2020, 95: 248-255.

[91] Li ZY, Hu RZ, Xie PH, et al. and CEAS for measurements of atmospheric N2O5 in Beijing, China[J]. Science of the Total Environment, 2018, 613/614: 131- 139.

[92] Chen B, Sun Y R, Zhou Z Y, et al. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis[J]. Applied Optics, 2014, 53(32): 7716-7723.

[93] Chen B, Wang J, Sun Y R, et al. Broad-range detection of water vapor using cavity ring-down spectrometer[J]. Chinese Journal of Chemical Physics, 2015, 28(4): 440-444.

[94] Chen B, Kang P, Li J Y, et al. Quantitative moisture measurement with a cavity ring-down spectrometer using telecom diode lasers[J]. Chinese Journal of Chemical Physics, 2015, 28(1): 6-10.

[95] 陈兵, 周泽义, 康鹏, 等. 光腔衰荡光谱方法探测痕量一氧化碳气体[J]. 光谱学与光谱分析, 2015, 35(4): 971-974.

    Chen B, Zhou Z Y, Kang P, et al. Trace carbon monoxide detection with a cavity ring-down spectrometer[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 971-974.

[96] 孙丽琴, 陈兵, 阚瑞峰, 等. 高灵敏度快速扫描光腔衰荡光谱方法探测大气CH4含量[J]. 光学学报, 2015, 35(9): 0930002.

    Sun L Q, Chen B, Kan R F, et al. High-sensitivity rapidly swept cavity ringdown spectroscopy for monitoring ambient CH4[J]. Acta Optica Sinica, 2015, 35(9): 0930002.

[97] Astel A, Walna B. Szczepaniak I K K, et al. Application of chemometry to the comparison of atmospheric precipitation pollution profiles in urban and ecologically protected areas[J]. Chemia Analityczna, 2006, 51(3): 377-389.

[98] Yang X, Lan Y, Meng J, et al. Effects of maize stover and its derived biochar on greenhouse gases emissions and C-budget of brown earth in Northeast China[J]. Environmental Science and Pollution Research, 2017, 24(9): 8200-8209.

[99] 毕哲, 周泽义, 王德发, 等. 大气本底温室气体测量标准物质研究进展[J]. 化学分析计量, 2014, 23(6): 97-102.

    Bi Z, Zhou Z Y, Wang D F, et al. Research progress of reference materials for atmospheric background greenhouse gases measurement[J]. Chemical Analysis and Meterage, 2014, 23(6): 97-102.

[100] Zhao X D, Wu L, Wang J, et al. Concentration variation and law of greenhouse gases in National Station for Background Atmospheric Monitoring, Menyuan, Qinghai, China and compare with Xining[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233: 052044.

[101] Lee S J, Song S K, Han S B. Influence of greenhouse gases on radiative forcing at urban center and background sites on Jeju Island using the atmospheric radiative transfer model[J]. Atmosphere, 2017, 27(4): 423-433.

[102] Nyfeler P, Schanda R, Moret H, et al. Measurements of greenhouse gases at Beromunster tall-tower station in Switzerland[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2603-2614.

[103] Gomez-Pelaez A J, Ramos R, Cuevas E, et al. Atmospheric CO2, CH4, and CO with the CRDS technique at the Izaña Global GAW station: instrumental tests, developments, and first measurement results[J]. Atmospheric Measurement Techniques, 2019, 12(4): 2043-2066.

[104] Morgan E J. Lavri J V, Seifert T, et al. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(2): 1511-1558.

[105] Berhanu T A, Satar E, Schanda R, et al. Measurements of greenhouse gases at Beromünster tall tower station in Switzerland[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(10): 10793-10822.

[106] Gao J, Yao T, Masson-Delmotte V, et al. Collapsing glaciers threaten Asia's water supplies[J]. Nature, 2019, 565(7737): 19-21.

[107] Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.

[108] Zhang G Q, Yao T D, Piao S L, et al. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades[J]. Geophysical Research Letters, 2017, 44(1): 252-260.

[109] Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.

[110] 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.

    Yao T D, Chen F H, Cui P, et al. From Tibetan Plateau to third pole and pan-third pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.

[111] Wu X J, Wang X S, Wang Y, et al. Origin of water in the Badain Jaran Desert, China: new insight from isotopes[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4419-4431.

[112] 王根绪, 钱鞠, 程国栋. 生态水文科学研究的现状与展望[J]. 地球科学进展, 2001, 16(3): 314-323.

    Wang G X, Qian J, Cheng G D. Current situation and prospect of the ecological hydrology[J]. Advance in Earth Sciences, 2001, 16(3): 314-323.

[113] 张玉翠, 孙宏勇, 沈彦俊, 等. 氢氧稳定同位素技术在生态系统水分耗散中的应用研究进展[J]. 地理科学, 2012, 32(3): 289-293.

    Zhang Y C, Sun H Y, Shen Y J, et al. Application of hydrogen and oxygen stable isotopes technique in the water depletion of ecosystems[J]. Scientia Geographica Sinica, 2012, 32(3): 289-293.

[114] 崔江鹏, 田立德, 刘琴, 等. 青藏高原中部大气水汽稳定同位素捕捉到印度洋台风“费林”信号[J]. 科学通报, 2014, 59(35): 3526-3532.

    Cui J P, Tian L D, Liu Q, et al. Signal of Typhoon Phailin from Indian Ocean captured by atmospheric water vapor isotope, central Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(35): 3526-3532.

[115] 姚檀栋, 丁良福, 蒲建辰, 等. 青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系[J]. 科学通报, 1991, 36(20): 1570-1573.

    Yao T D, Ding L F, Pu J C, et al. The characteristics of δ18O during snowfall in Tanggula Mountain area of Qinghai-Tibet Plateau and its relationship with water vapor source[J]. Chinese Science Bulletin, 1991, 36(20): 1570-1573.

[116] An W L, Hou S G, Zhang W B, et al. Corrigendum: possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J]. Scientific Reports, 2017, 7: 46863.

[117] Liu J, Liu W, An Z, et al. Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale[J]. Scientific Reports, 2016, 6: 19711.

[118] 柳景峰, 效存德, 丁明虎, 等. 南极科考断面水汽同位素观测与模拟及其反映的水循环信息[J]. 冰川冻土, 2014, 36(6): 1440-1449.

    Liu J F, Xiao C D, Ding M H, et al. Observing and modeling the atmospheric water vapor isotopes in south hemisphere and their implication of water cycle[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1440-1449.

[119] Lis G, Wassenaar L I, Hendry M J. High-precision laser spectroscopy D/H and 18O/ 16O measurements of microliter natural water samples[J]. Analytical Chemistry, 2008, 80(1): 287-293.

[120] Gupta P, Noone D, Galewsky J, et al. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology[J]. Rapid Communications in Mass Spectrometry, 2009, 23(16): 2534-2542.

[121] Kei Y. Stable water isotopes in climatology, meteorology, and hydrology: a review[J]. Journal of the Meteorological Society of Japan, 2015, 93(5): 513-533.

[122] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.

[123] Valentine D L, Kastner M, Wardlaw G D, et al. Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon[J]. Journal of Geophysical Research: Biogeosciences, 2005, 110(G2): G02005.

[124] Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168.

[125] 孙春岩, 赵浩, 贺会策, 等. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6): 225-241.

    Sun C Y, Zhao H, He H C, et al. In-situ detection of ocean floor seawater and gas hydrate exploration in the South China Sea[J]. Earth Science Frontiers, 2017, 24(6): 225-241.

[126] Garcia M L, Masson M. Environmental and geologic application of solid-state methane sensors[J]. Environmental Geology, 2004, 46(8): 1059-1063.

[127] Isern A R. National science foundation's ocean observatory initiative[J]. Sea Technology, 2005, 46(6): 55-59.

[128] McCartt A D, Ognibene T, Bench G, et al. Measurements of carbon-14 with cavity ring-down spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B, 2015, 361: 277-280.

[129] Genoud G, Lehmuskoski J, Bell S, et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples[J]. Analytical Chemistry, 2019, 91(19): 12315-12320.

[130] Terabayashi R, Saito K, Sonnenschein V, et al. Mid-infrared cavity ring-down spectroscopy using DFB quantum cascade laser with optical feedback for radiocarbon detection[J]. Japanese Journal of Applied Physics, 2020, 59(9): 092007.

[131] Chen Y, Mahaffy P, Holmes V, et al. Near infrared cavity ring-down spectroscopy for isotopic analyses of CH4 on future Martian surface missions[J]. Planetary and Space Science, 2015, 105: 117-122.

[132] Bauska T K, Walters G, Gázquez F, et al. Online differential thermal isotope analysis of hydration water in minerals by cavity ringdown laser spectroscopy[J]. Analytical Chemistry, 2018, 90(1): 752-759.

[133] Chen Y, Lehmann K K, Kessler J, et al. Measurement of the 13C/ 12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy[J]. Analytical Chemistry, 2013, 85(23): 11250-11257.

刘文清, 王兴平, 马国盛, 刘英, 赵之豪, 李想, 邓昊, 陈兵, 阚瑞峰. 高灵敏腔衰荡光谱技术及其应用研究[J]. 光学学报, 2021, 41(1): 0130003. Wenqing Liu, Xingping Wang, Guosheng Ma, Ying Liu, Zhihao Zhao, Xiang Li, Hao Deng, Bing Chen, Ruifeng Kan. Research of High Sensitivity Cavity Ring-Down Spectroscopy Technology and Its Application[J]. Acta Optica Sinica, 2021, 41(1): 0130003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!