光学 精密工程, 2019, 27 (6): 1345, 网络出版: 2019-07-29   

用于凝血酶原时间检测的多壁碳纳米管增强型电化学传感器

Multi-walled carbon nanotubes enhanced electrochemical sensor for prothrombin time detection
李超 1,2郭振 1,2张威 1,2姚佳 2,3孔慧 1,2严茹红 4周连群 1,2
作者单位
1 中国科学技术大学, 安徽 合肥 230026
2 中国科学院 苏州生物医学工程技术研究所中国科学院生物医学检验技术重点实验室, 江苏 苏州 215163
3 苏州大学 电子信息学院, 江苏 苏州 215006
4 苏州科技城医院 检验科, 江苏 苏州 215153
摘要
针对目前凝血检测仪器存在的成本昂贵操作复杂等问题, 制作了一种基于丝网印刷技术的多壁碳纳米管(MWCNTs)增强型电化学传感器用于凝血酶原时间(PT)测量。利用凝血酶切割凝血酶底物实验验证了计时电流法检测凝血酶原时间原理的可行性。接着对血浆凝血酶原时间参数进行测量, 并用SYSMEX CS 5100光学凝血仪验证测量结果。经过测试, 凝血酶验证性实验中MWCNT型电化学传感器的电流响应强度较普通电化学传感器增加了(36±1)%, 重复实验出峰时间和峰值电流变异系数分别为2.99%和3.27%。测试不同血样PT值, 能够清晰的显示出区分度, 且挑选三组血样进行PT重复实验, 出峰时间变异系数分别为2.26%、3.22%和2.96%, 实验结果与医院的临床结果线性拟合决定系数R2为0.986。MWCNTs增强型型电化学传感器用于PT测试具有良好的重复性和一致性, 易于批量生产, 大大降低了凝血测量的成本, 且适合多种场合的测量, 在即时检测领域具有极大潜力。
Abstract
The determination of coagulation parameters is of crucial significance in the guided treatment of anticoagulant drug users and patients with liver diseases. Considering the challenges associated with commercial coagulation detection instruments such as high cost and complex operation, a MWCNT-enhanced screen-printed electrochemical sensor was developed for coagulation measurement. Initially, the measurement of thrombin substrate cleaved by thrombin was used to evaluate the feasibility of prothrombin time (PT) detection by chronoamperometry. Then the plasma PT parameters were measured and the results were validated using the SYSMEX CS 5100 optical coagulator. The response intensity of a MWCNT electrochemical sensor in thrombin validation experiments increase by (36±1)% compared with a general electrochemical sensor and the peak time coefficient of variation and peak current coefficients of variation are 2.99% and 3.27% respectively. The testing of PT values of different blood samples clearly shows discrimination. Three groups of blood samples are selected for repeated PT parameter measurements and the coefficients of variation are 2.26%, 322%, and 2.96% respectively. The linear fitting decision coefficient R2 is 0.986 for clinical results. The MWCNT screen-printed electrochemical sensor for PT testing has good repeatability and consistency, is easy to mass produce, reduces the cost of coagulation measurement, and is suitable for measurement in many circumstances. As such, this sensor has great potential in the field of point-of-care testing.
参考文献

[1] 李清祥, 黄建华. 临床常见凝血指标异常结果分析[J]. 实验与检验医学, 2010, 28(2): 173-174.

    LI Q X, HUANG J H. Analysis of abnormal results of common coagulation indexes in clinic [J]. Experimental and Laboratory Medicine, 2010, 28(2): 173-174. (in Chinese)

[2] 李琴, 贾继东, 王宝恩. 凝血酶原时间及凝血因子在肝病中的应用[J]. 中华肝脏病杂志, 2004, 12(12): 767-768.

    LI Q, JIA J D, WANG B E. Application of prothrombin time and coagulation factor in liver diseases [J]. Chinese Journal of Hepatology, 2004, 12(12): 767-768. (in Chinese)

[3] CARDENAS J C, REIN-SMITH C M, CHURCH F. Overview of blood coagulation and the pathophysiology of blood coagulation disorders [J]. Encyclopedia of Cell Biology, 2016: 714-722.

[4] 程烽, 朱忠勇. 凝血酶原时间测定标准化及在抗凝治疗中应用[J]. 中华检验医学杂志, 1995, 18(2): 111-113.

    CHENG F, ZHU ZH Y. Standardization of prothrombin time determination and its application in anticoagulation therapy [J]. Chinese Medical Journal, 1995, 18(2): 111-113. (in Chinese)

[5] HARRIS L F, CASTRO-LPEZ V, KILLARD A J. Coagulation monitoring devices: Past, present, and future at the point of care [J]. TrAC Trends in Analytical Chemistry, 2013, 50: 85-95.

[6] BOLDT J.Point-Of-Care (POC) Monitoring of Coagulation in the Critically Ⅲ [M]. Berlin: Springe Berlin Heidelberg, 1999: 570-576.

[7] JIR H. Surface plasmon resonance sensors for detection of chemical and biological species [J]. Chemical Reviews, 2010, 39(18): 068107d.

[8] THOMPSON M, BLASZYKOWSKI C, SHEIKH S, et al.. A true theranostic approach to medicine: Towards tandem sensor detection and removal of endotoxin in blood [J]. Biosensors & Bioelectronics, 2015, 67: 3-10.

[9] SAVIZI I S, KARIMINIA H R, GHADIRI M, et al.. Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor [J]. Biosensors & Bioelectronics, 2012, 35(1): 297-301.

[10] 马庆运. 丝网印刷电极的制备及其电化学性能研究[D]. 天津: 天津工业大学, 2017.

    MA Q Y. Preparation and Electrochemical Properties of Screen-printed Electrodes [D]. Tianjin: Tianjin Polytechnic University, 2017. (Chinese)

[11] PING J, WANG Y, FAN K, et al.. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application [J]. Biosensors & Bioelectronics, 2011, 28(1): 204-209.

[12] OHALLORAN M P, PRAVDA M, GUILBAULT G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors [J].Talanta, 2001, 55(3): 605-611.

[13] RENEDO O D, ALONSO L M A, ARCOS M M J. Recent developments in the field of screen-printed electrodes and their related applications [J].Talanta, 2007, 73(2): 202-219.

[14] CAGNINI A, PALCHETTI I, LIONTI I, et al.. Disposable ruthenized screen-printed biosensors for pesticides monitoring [J].Sensors and Actuators B, 1995, 24(1-3): 85-89.

[15] O DOMNGUEZ R, ALONSO-LOMILLO M A, MARTNEZ M J A. Recent developments in the field of screen-printed electrodes and their related applications [J]. Talanta, 2007, 73(2): 202-219.

[16] IIJIMA, SUMIO. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.

[17] 甄生航. 基于多壁碳纳米管的三电极血乙生物传感器的研究[D]. 重庆: 重庆医科大学, 2011: 389-392.

    ZHEN SH H. Three-electrode Blood Ethanol Biosensor based on Multi-walled Carbon Nanotubes [D]. Chongqing: Chongqing Medical University, 2011: 389-392. (in Chinese)

[18] 李屹. 基于丝网印刷电极的纳米增敏型电化学适体生物传感器研究[D]. 长沙: 中南大学, 2013.

    LI Y.Research on Nano-sensitized Electrochemical Aptamer Biosensor based on Screen-printed Electrodes [D]. Changsha: Central South University, 2013. (inChinese)

[19] BANKS C E, MOORE R R, DAVIES T J, et al.. Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes [J]. Chemical Communications, 2004, 16(16): 1804-1805.

[20] PATOLSKY F, WEIZMANN Y, WILLNER I. Range electrical Contacting of redox enzymes by SWCNT connectors [J]. Angewandte Chemie, 2004, 43(16): 2113-2117.

[21] 李传宇, 孔慧, 唐玉国, 等. 超薄硅沉底氮化铝Lamb波压电谐振器[J]. 光学 精密工程, 2018, 26(2): 371-379.

    LI CH Y, KONG H, TANG Y G, et al.. Aluminum nitride Lamb wave pie zoelectric resonators based on ultrathin silicon substrates [J]. Opt. Precision Eng., 2018, 26(2): 371-379. (in Chinese)

[22] 张冬至. 静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J]. 光学 精密工程, 2014, 22(6): 1562-1570.

    ZHANG D ZH. Structure characterization and electric properties of electrostatic-induced self-assembly carbon nanotube films [J]. Opt. Precision Eng., 2014, 22(6): 1562-1570. (in Chinese)

[23] 丰斌, 姚佳, 张威, 等. Parylene-C增强型QCM耗散检测系统用于aPTT测量[J]. 光学 精密工程, 2018, 26(9): 2304-2311.

    FENG B, YAO J, ZHANG W, et al.. Parylene-Cenhanced QCM based dissipation detecting system for aPTT measurement [J]. Opt. Precision Eng., 2018, 26(9): 2304-2311. (in Chinese)

[24] YANG Y C, ZHANG W, GUO Z, et al.. Stability enhanced, repeatability improved Parylene-C passivated on QCM sensor for aPTT measurement [J]. Biosensors & Bioelectronics, 2017, 98: 41-46.

[25] LEI K F, CHEN K H, TSUI P H, et al.. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip [J].Plos One, 2013, 8(10): e76243.

[26] CHEN D, SONG S, MA J, et al.. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring [J]. Biosensors & Bioelectronics, 2017, 91: 465-471.

[27] YANG C L, HUANG S J, CHOU C W, et al.. Design and evaluation of a portable optical-based biosensor for testing whole blood prothrombin time [J].Talanta, 2013, 116(22): 704-711.

[28] THUERLEMANN C, HAEBERLI A, ALBERIO L. Monitoring thrombin generation by electrochemistry: Development of an amperometric biosensor screening test for plasma and whole blood[J]. Clinical Chemistry, 2009, 55(3): 505-512.

[29] CHRISTIAN L, PETER W, SVENDSEN L G, et al.. Oligopeptide derivatives for the electrochemical measurement of protease activity [Z]. Europe PMC, 2002.

[30] THURLEMANN C, HAEBERLI A, FRENKEL E, et al.. System for differential determination of a proteolytic enzyme level in a bodily fluid [Z]. Europe PMC, 2013.

李超, 郭振, 张威, 姚佳, 孔慧, 严茹红, 周连群. 用于凝血酶原时间检测的多壁碳纳米管增强型电化学传感器[J]. 光学 精密工程, 2019, 27(6): 1345. LI Chao, GUO Zhen, ZHANG Wei, YAO Jia, KONG Hui, YAN Ru-hong, ZHOU Lian-qun. Multi-walled carbon nanotubes enhanced electrochemical sensor for prothrombin time detection[J]. Optics and Precision Engineering, 2019, 27(6): 1345.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!