光学 精密工程, 2019, 27 (11): 2420, 网络出版: 2020-01-07   

永磁偏置径向磁轴承能量优化与实验

Energy optimization and experimental for a permanent magnet-biased redial magnetic bearing
作者单位
1 北京石油化工学院 精密电磁装备与先进测量技术研究所, 北京 102617
2 北京航空航天大学 惯性技术重点实验室, 北京 100191
3 北京控制工程研究所 空间智能控制技术重点实验室, 北京 100190
摘要
针对磁悬浮飞轮低功耗的要求, 对一种经典永磁偏置径向磁轴承进行能量优化研究。介绍了磁轴承的磁路结构和工作原理, 基于磁轴承电流刚度和位移刚度数学模型, 提取出轴承能量优化因子σ。在此基础上, 建立了磁轴承功耗的目标函数, 并对磁轴承功耗进行优化, 得到了最优功耗数学表达式及其对应的σ大小。通过有限元法对轴承功耗优化结果进行仿真验证, 其结果与理论分析结果基本吻合。在此基础上, 基于优化结果研制了一套磁轴承, 并通过改进现有15 Nms磁悬浮飞轮进行功耗测试。结果表明: 振幅为10 μm时, 单组绕组的最优功耗为0.87 W, 与理论最优值0.79 W的最大误差为9%。该能量优化方法提高了磁轴承低功耗设计效率, 对飞轮系统整体功耗优化具有重要意义。
Abstract
To address the requirement for low power of a magnetically suspended flywheel, the energy optimization of permanent magnet-biased radial magnetic bearing is studied. The magnetic circuit and working principles are introduced, based on the current stiffness and displacement stiffness mathematical models of a magnetic bearing, and the energy optimization factor σ of a magnetic bearing is obtained. The objective function of the power consumption of the magnetic bearing is then established, followed by optimization of the consumption. Subsequently, a mathematical expression for optimal power consumption and the value of σ are determined. The power consumption of the magnetic bearing is simulated and verified using the finite element method. The obtained results are tallied with the results of the theoretical analysis. Finally, based on the results of the optimization, a magnetic bearing is developed and power consumption is tested to improve the existing 15-Nms magnetically suspended flywheel. The results show that when the amplitude is 10 μm, the value of optimal power consumption for each winding is 0.85 W, with a maximum error of 7% compared with the theoretical optimal power consumption of 0.79 W. The designed efficiency of a magnetic bearing consuming low power is improved using the energy optimization method, which is important for the power optimization of flywheel systems.
参考文献

[1] 王辉, 武俊峰, 李胤, 等. 小卫星姿态控制飞轮系统热设计[J]. 光学 精密工程, 2015, 23(8): 2265-2272.

    WANG H, WU J F, LI Y, et al.. Thermal design of attitude control flywheel system for small satellites[J]. Opti. Precision Eng., 2015, 23(8): 2265-2272.(in Chinese)

[2] 刘强, 赵勇, 代峰燕, 等. 磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承[J]. 光学 精密工程, 2018, 26(2): 399-409.

    LIU Q, ZHAO Y, DAI F Y, et al.. Novel internal Lorentz magnetic bearing for magnetic bearing gyrowheel[J]. Opti. Precision Eng., 2018, 26(2): 399-409.(in Chinese)

[3] LIU Q, WANG K, REN Y, et al.. Novel repeatable launch locking/unlocking device for magnetically suspended momentum flywheel[J]. Mechatronics, 2018, 54: 16-25.

[4] 韩邦成, 贺赞, 翟鲁鑫, 等. 单框架磁悬浮控制力矩陀螺的损耗计算及热-结构耦合分析[J]. 光学 精密工程, 2018, 26(10): 2463-2474.

    HAN B CH, HE Z, ZHAI L X, et al.. Loss calculation and thermal-structural coupling analysis of a single gimbal magnetically suspended control moment gyroscope[J]. Opt. Precision Eng., 2018, 26(10): 2463-2474. (in Chinese)

[5] 贾颖, 李东明, 赵玉龙, 等. 压电驱动的超声悬浮精密轴承静动态承载特性[J]. 光学 精密工程, 2019, 27(5): 1103-1109.

    JIA Y, LI D M, ZHAO Y L, et al.. Static and dynamic load capacity of piezoelectric actuated ultrasonic levitation precision bearing[J]. Opt. Precision Eng., 2018, 27(5): 1103-1109. (in Chinese)

[6] 吴磊涛, 王东, 苏振中, 等. 考虑定子外壳漏磁的同极式永磁偏置径向磁轴承磁路模型[J]. 电工技术学报, 2017, 32(11): 118-125.

    WU L T, WANG D, SU Z Z, et al.. Leakage magnetic field and precise magnetic circuit model of the permanent magnetic biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 118-125.(in Chinese)

[7] MATSUZAKI T, TAKEMOTO M, OGASAWARA S, et al.. A basic study of a novel homopolar type magnetic bearing unifying four C-shaped cores for high output and low loss[J]. IEEE Transaction on Magnetics, 2015: 51(11): 8114604.

[8] YOHJI O, HIROAKI K, et al.. MIRACBEARING: New concept of magnetic bearing[C]. Proc 9th International Symposium on magnetic bearings, Lexington, Kentucky, 2004.

[9] 房建成, 孙津济. 一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J]. 北京航空航天大学学报, 2006, 32(11): 1304-1307.

    FANG J C, SUN J J. New permanent magnet biased radial magnetic bearing in magnetic suspending flywheel application[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2011, 32(11): 1304-1307. (in Chinese)

[10] 房建成, 孙津济. 一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J]. 北京航空航天大学学报, 2006, 32(11): 1304-1307.

    FANG J CH, SUN J J. New permanent magnet biased radial magnetic bearing in magnetic suspending flywheel application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11): 1304-1307.(in Chinese)

[11] PARK S H, LEE C W. Decoupled control of a disk-type rotor equipped with a three-pole hybrid magnetic bearing[J]. ASME Transactions on Mechatronics, 2010, 15(5): 793-804.

[12] JI L, XU L X, JIN C W. Research on a low power consumption six-pole heteropolar hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4918-4926.

[13] 蒋涛. 一种两气隙永磁偏置内转子径向磁轴承: CN201010226322.X[P]. 2011-12-28. http: //www.soopat.com/Patent/201010226322lx=FMSQ.

    JIANG T. Dual-air gap permanent magnet oggset inner rotor radial magnet bearing: CN201010226322.X[P]. 2011-12-28. http: //www.soopat.com/Patent/201010226322lx=FMSQ. (in Chinese)

[14] 赵旭升, 邓智泉, 王晓琳, 等. 三磁极的永磁偏置径向磁轴承: CN200710135183.8[P]. 2009-06-03. http: //www.soopat.com/Patent/200710135183.

    ZHAO X S, DENG Z Q, WANG X L, et al.. Three magnetic pole permanent magnetism bias radial direction magnetic bearing: CN200710135183.8[P]. 2009-06-03. http: //www.soopat.com/Patent/200710135183. (in Chinese)

[15] NA U J. Fault tolerance of homopolar magnetic bearings[J]. Journal of Sound and Vibration, 2004, 272(3/4/5): 495-511.

[16] 韩邦成, 房建成, 孙津济, 等. 一种有冗余结构的永磁偏置外转子径向磁轴承: CN200710063271.1[P]. 2009-01-14. http: //www.soopat.com/Patent/200710063271lx=FMSQ.

    HANG B CH, FANG J C, SUN J J, et al.. PM offset external rotor radial magnetic bearing with redundant structure: CN200710063271.1[P]. 2009-01-14. http: //www.soopat.com/Patent/200710063271lx=FMSQ. (in Chinese)

[17] RAJAGOPAL K R, SIVADASAN K K. Low-stiction magnetic bearing for satellite application[J]. Journal of Applied Physics, 2002, 91(10): 6994.

[18] HOU E Y, LIU K. Investigation of axial capacity of radial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2012, (48): 38-46.

[19] HOU E Y, LIU K. Tilting characteristic of a 2-axis radial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4900-4910.

[20] WANG H Z, LIU K, AO P. Magnetic field and specific axial load capacity of hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4911-4917.

[21] XU Y L, XIN F. Model establishment and parameter calculation of permanent magnet-biased hybrid magnetic bearing with magnet in rotor[C]. 2007 2nd IEEE Conference on Industrial Electronics and Applications, May 23-25, 2007. Harbin, China. New York, USA: IEEE, 2007.

[22] XU Y L, DUN Y Q, WANG X H, et al.. Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1363-1366.

[23] 刘强, 房建成, 韩邦成. 磁悬浮飞轮锁紧保护效果的检测[J]. 光学 精密工程, 2015, 23(1): 157-164.

    LIU Q, FANG J CH, HAN B C. Detection of locking protection effect for magnetic bearing flywheel[J]. Opti. Precision Eng., 2015, 23(1): 157-164.(in Chinese)

[24] FANG J C, XU X B, XIE J J. Active vibration control of rotor imbalance in active magnetic bearing systems[J]. Journal of Vibration and Control, 2015, 21(4): 684-700.

刘强, 赵明师, 韩邦成, 樊亚洪, 孙津济, 郑世强. 永磁偏置径向磁轴承能量优化与实验[J]. 光学 精密工程, 2019, 27(11): 2420. LIU Qiang, ZHAO Ming-shi, HAN Bang-cheng, FAN Ya-hong, SUN Jin-ji, ZHENG Shi-qiang. Energy optimization and experimental for a permanent magnet-biased redial magnetic bearing[J]. Optics and Precision Engineering, 2019, 27(11): 2420.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!