应用激光, 2019, 39 (4): 621, 网络出版: 2019-10-12   

激光抛光3D打印钛合金板的机理及工艺研究

Study on Mechanism and Process of Laser Polished 3D Printing Titanium Alloy Sheet
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
首先用波长为10.6 μm的二氧化碳激光对TC4合金表面进行抛光。利用三维形貌仪测量材料表面粗糙度, 结合抛光前后材料表面微观形貌特征分析激光功率、离焦量、扫描速度、扫描间距等因素对该材料表面粗糙度的影响。获得理想的工艺参数, TC4合金表面粗糙度具有最小值117.62 nm。但二氧化碳激光抛光TC4合金容易出现热积累严重和表面裂纹等问题。然后用波长为1 080 nm的光纤激光对TC4合金进行抛光, 同样分析了金属表面形貌、离焦量和扫描路径等因素对该材料表面粗糙度的影响规律。创新性地使用多重移动扫描抛光, 获得理想的抛光效果, TC4合金表面粗糙度最佳为148.91 nm。以上实验结果表明, 使用光纤激光器进行多重移动扫描可以快速有效抛光TC4合金, 且激光能量密度较小, 表面无明显形变和裂纹。
Abstract
First of all, using a carbon dioxide laser with a wavelength of 10.6 μm, the surface of TC4 alloy was polished. The surface roughness of the material was measured with a three-dimensional profile instrument. The influences of factors on the surface roughness such as laser power, defocus amount, scanning speed, and scanning pitch were analyzed in combination with the micro-morphology of the material surface before and after polishing. Obtaining the ideal process parameters, the minimum surface roughness of the TC4 alloy was 117.62 nm. However, thecarbon dioxide laser polishing caused serious heat accumulation and obvious surface cracks. Then, using a fiber laser with a wavelength of 1080 nm polished the TC4 alloy.Similarly, The effects on the surface roughness such as surface morphology, defocus amount, and scanning path were analyzed. Innovatively using multiple moving scanning polishing, theoptimal polishing effect was achieved. The minimum surface roughness of the TC4 alloy was148.91 nm. The experimental results show that the using of the fiber lasers for multiple shifting scans can more quickly and effectively polish the TC4 titanium alloy. And due to the low laser energy density, there is no obvious deformation and cracks on the surface of the TC4 alloy.
参考文献

[1] 张峰烈.金属材料纳秒紫外脉冲激光微抛光理论与技术的研究[D].天津: 天津大学, 2011: 93-98.

[2] 王伊卿.增材制造金属表面多重激光抛光及强化方式: 201410315813.X[P].2014-07-03.

[3] LI J F, WEI Z Y.Research progress of titanium and titanium alloys fabricated by selective laser melting technology[J].Laser & Optoelectronics Progress, 2018, 55(1): 011410.

[4] 李诚.激光微烧结工件表面的激光微抛光研究[D].武汉: 华中科技大学, 2012: 27-36.

[5] 杨永强, 刘洋, 宋长辉.金属零件3D打印技术现状及研究进展[J].机电工程技术, 2013(4): 1-8.

[6] 陈林, 杨永强.激光抛光[J].激光与光电子学进展, 2003(8): 57-59.

[7] TRAINI T, MANGANOH C, SAMMONS R L, et al.Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants[J].Dental Materials, 2008, 24(11): 1525-1533.

[8] KINZIE N F.Method and apparatus for the manufacture of three-dimensional objects: US005997681A[P].1999-12-07.

[9] YAMADA T, TAKAHASHI M, NAGATA M.Apparatus for manufacturing micro-structure: US6557607B2[P].2003-5-6.

[10] 陈涛, 王彩红, 吴坚, 等.激光抛光技术的研究现状[J].新技术新工艺, 2009(9): 70-73.

[11] HUA M, SEDAO, SHAO T M, et al.Surface transformation of DF-2 steel after continuous mode laser irradiation[J].Journal of Materials Processing Technology, 2007, 192(SI): 89-96.

周宇羚, 单等玉, 王争飞, 陈涛. 激光抛光3D打印钛合金板的机理及工艺研究[J]. 应用激光, 2019, 39(4): 621. Zhou Yuling, Shan Dengyu, Wang Zhengfei, Chen Tao. Study on Mechanism and Process of Laser Polished 3D Printing Titanium Alloy Sheet[J]. APPLIED LASER, 2019, 39(4): 621.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!