光学学报, 2008, 28 (8): 1480, 网络出版: 2009-08-31   

基于扩展数学形态学的高光谱图像异常检测

Anomaly Detection Based on Extended Mathematical Morphology for Hyperspectral Imagery
作者单位
北京航空航天大学仪器科学与光电工程学院精密机电一体化技术教育部重点实验室, 北京 100083
摘要
提出了一种新型的基于扩展数学形态和光谱相似度测量的高光谱图像异常检测方法。在目标与背景未知的情况下,同时利用光谱和空间信息实现目标的定位与检测,实现高光谱遥感数据的目标检测。通过扩展的膨胀和腐蚀操作实现目标特征提取; 通过正交投影散度计算扩展形态学操作的累加距离确定排序关系并利用其融合特征提取结果实现特征提取结果的融合。算法性能通过合成的OMIS数据进行评价,与经典异常检测RX算法进行比较,并应用于具有相似光谱特征目标的区分。实验证明,本文提出的算法性能优于RX算法,具有低虚警率的异常目标检测结果,并且能够较好地区分了相似光谱特征的异常目标。
Abstract
A novel anomaly detection algorithm based on the theory of extended mathematical morphology and spectral similarity measurement is proposed for hyperspectral imagery. The spatial and spectral information has been used to locate and detect targets under the condition of none prior knowledge of targets and background. The extended mathematical morphological erosion and dilation operations are performed respectively to extract the targets features. The orthogonal projection divergence is used to calculate the cumulative distance in the erosion and dilation operations to determine the ordering relation. And the orthogonal projection divergence is also performed to measure the spectral similarity to fuse the results of feature extraction. The synthesized hyperspectral images collected by object modularization imaging spectrometer (OMIS) is applied to evaluate the proposed algorithm, the proposed algorithm is compared with RX algorithm by a specifically designed experiment, andit is applied to distinguish the targets with similar spectral characteristics. From the results of experiments, it is illuminated that the proposed algorithm can detect anomalous targets with low false alarm rate and its performance is better than that of RX algorithm under the same condition. It is also illuminated that the proposed algorithm can differentiate targets with similar spectral characteristics well with low false alarm rate.
参考文献

[1] . J. Stein, Scott G. Beaven, Lawrence E. Hoff et al.. Anomaly detection from hyperspectral imagery[J]. IEEE Signal Processing Magazine, 2002, 19(1): 58-69.

[2] . E., Reed I. S. et al.. Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach[J]. IEEE Trans. on Image Processing, 1997, 6(1): 143-156.

[3] . . Texture feature analysis using a Gauss-Markov model in hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(7): 1543-1551.

[4] C.-I. Chang. Hyperspectral imaging: Techniques for Spectral Detection and Classification[M]: New York: Kluwer Academic/Plenum Publishers, 2003. 13~102

[5] V. Achard, A. Landrevie, J. C. Fort. Anomalies detection in hyperspectral imagery using projection pursuit algorithm[C]. Proc. SPIE, 2004, 5573: 193~202

[6] Na Li, Peng Du, Huijie Zhao. Independent component analysis based on quantum genetic algorithm and its application to hyperspectral images[C]. International Geoscience and Remote Sensing Symposium (IGRSS), 2005, IEEE, 2005, 6: 4323~4326

[7] 寻丽娜, 方勇华, 李新. 高光谱图像中基于端元提取的小目标检测算法[J]. 光学学报, 2007, 27(7): 1178~1182

    Xun Lina, Fang Yonghua, Li Xin. A small target detection approach based on endmember extraction in hyperspectral image[J]. Acta Optica Sinica, 2007, 27(7): 1178~1182

[8] 贺霖, 潘泉, 邸幃 等. 一种基于单似然检验的高光谱图像小目标检测器[J]. 光学学报, 2007, 27(12): 2155~2162

    He Lin, Pan Quan, Di Wei et al.. A small-target detector based on single likelihood test for hyperspectral imagery[J]. Acta Optica Sinica, 2007, 27(12): 2155~2162

[9] . A. Benediktsson, J. A. Palmason, K. Arnason. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 480-491.

[10] 冈萨雷斯. 数字图像处理[M]. 第二版, 北京: 电子工业出版社, 2005. 445~448

    Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing[M]. 2nd ed., Beijing: Publishing House of Electronics Industry, 2005. 445~448

[11] . Perez et al.. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 650-662.

[12] . Perez et al.. Spatial/spectral endmember extraction by multidimensional morphological operations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2025-2041.

[13] . Perez et al.. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 466-479.

李娜, 赵慧洁, 贾国瑞, 董超. 基于扩展数学形态学的高光谱图像异常检测[J]. 光学学报, 2008, 28(8): 1480. Li Na, Zhao Huijie, Jia Guorui, Dong Chao. Anomaly Detection Based on Extended Mathematical Morphology for Hyperspectral Imagery[J]. Acta Optica Sinica, 2008, 28(8): 1480.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!