激光与光电子学进展, 2016, 53 (1): 012302, 网络出版: 2016-01-25   

非对称共振腔结构的可调等离子体诱导透明效应 下载: 1050次

Tunable Plasmonically Induced Transparency with Unsymmetrical Resonators
作者单位
江南大学理学院, 江苏 无锡 214122
摘要
设计了一种可调的等离子体诱导透明(PIT)效应的双槽谐振器的金属-绝缘体-金属(MIM)表面等离子体波导结构。利用微腔共振模式实现对表面等离子体在波导中传输操控。分别改变槽的长度,两槽之间的距离和槽填充材料的介电常数实现特定滤波效应,结合电场分布分析表面等离子体在波导中共振产生的电磁诱导透明现象,并设计动态可调的等离子体诱导透明效应器件。利用有限元法(FEM)对设计进行数值模拟。
Abstract
The tunable plasmonic-induced transparency (PIT) is proposed numerically in the plasmonic system composed of dual unsymmetrical resonators shaped metal-insulator-metal (MIM) waveguide. The specific filtering effects are realized by changing the length of the groove and dielectric constant. The phenomena of the plasmonicinduced transparency caused by the surface plasmonic resonance in the waveguide are analyzed according to the electric field distributions. The finite element method (FEM) method is conducted to verify numerical simulation. The structure is applied widely in optical communication, integrated optics, and lithography.
参考文献

[1] Wang Bing, Teng Jinghua, Yuan Xiaocong. Inelastic scattering of surface plasmons in scillating metallic waveguides[J]. Appl Phys Lett, 2011, 98(26): 263111.

[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[3] Neutens P, Van Dorpe P, De Vlaminck I, et al.. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides[J]. Nat. photonics, 2009, 3: 283-286.

[4] Yao Xiankun. Wavelength demultiplexing in metal-insulator-metal plasmonic waveguides[J]. Mod Phys Lett B, 2014, 28(4): 1450025.

[5] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nat Photonics, 2010, 4(2): 83-91.

[6] 施伟华, 吴静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

    Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

[7] Matsuzaki Y, Okamoto T, Haraguchi M, et al.. Characteristics of gap plasmon waveguide with stub structures[J]. Opt Express, 2008, 16(21): 16314-16325.

[8] Lin Xianshi, Huang Xuguang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33(23): 2874-2876.

[9] Xia Xiushan, Wang Jicheng, Liang Xiuye, et al.. A dual-way directional surface-plasmon -polaritons launcher based on asymmetric slanted nanoslits[J]. J Mod Opt, 2015, 62(5): 358-363.

[10] Zhu Qionggan, Tan Wei, Wang Zhiguo. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide[J]. J Phys, 2014, 26(25): 255301.

[11] 陈全胜, 佟玉莹, 庄园, 等. 基于金属狭缝凹槽结构单向激发表面等离子体[J]. 中国激光, 2014, 41(5): 0510001.

    Chen Quansheng, Tong Yuying, Zhuang Yuan, et al.. Unidirectional excitation of surface plasmon based on metallic slitgroove structure[J]. Chinese J Lasers, 2014, 41(5): 0510001.

[12] 王继成, 蒋亚兰, 王跃科, 等. 基于MIM 结构等离子体波导定向耦合器[J]. 中国激光, 2015, 42(2): 0217001.

    Wang Jicheng, Jiang Yalan, Wang Yueke, et al.. Directional couplers based on the MIM plasmonic waveguide stuctures [J]. Chinese J Lasers, 2015, 42(2): 0217001.

[13] Zhu W, Rukhlenko I D, Premaratne M. Manipulating energy flow in variable-gap plasmonic waveguides[J]. Opt Lett, 2012, 37(24): 5151-5153.

[14] Hansik Y, Lee S Y, Kim K Y, et al.. Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer[J]. Opt Express, 2014, 22(7): 8383-8395.

[15] Zhang Z, Zhang L, Li H, et al.. Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity[J]. Appl Phys Lett, 2014, 104: 231114.

[16] Miyata M, Hirohata J, Nagasaki Y, et al.. Multi-spectral plasmon induced transparency via in-plane dipole and dualquadrupole coupling [J]. Opt Express, 2014, 22(10): 11399-11406.

[17] Chen J J, Li Z, Yue S, et al.. Plasmon-induced transparency in asymmetric T-shape single slit[J]. Nano Lett, 2012, 12(5): 2494-2498.

[18] Biswas S, Duan J S, Nepal D, et al.. Plasmon induced transparency in the visible via self-assembled gold nanorod heterodimers[J]. Nano Lett, 2013, 13: 6287-6291.

[19] Wang Guoxi, Lu Hua, Liu Xueming. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency[J]. Opt Express, 2012, 20(19): 20902-20907.

[20] Wang Jicheng, Sun Lin, Hu Zhengda, et al.. Plasmonically induced transparency of asymmetrical grooves shaped plasmonic waveguide[J]. AIP Advances, 2014, 4(12): 123006.

[21] Guoxi Wang, Hua Lu. Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator [J]. Opt Commun, 2012, 285: 4190-4193.

[22] S I Bozhevolnyi, J Jung. Scaling for gap plasmon based waveguides[J]. Opt Express, 2008, 16(4): 2676-2679.

[23] J Park, H Kim, B Lee. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating[J]. Opt Express, 2008, 16(1): 413-425.

[24] 孙原超, 陈全胜, 王跃科, 等. 准周期的表面等离子体布拉格光栅的理论研究[J]. 中国激光, 2015, 42(8): 0808003.

    Sun Yuanchao, Chen Quansheng, Wang Yueke, et al.. Theoretical study on quasiperiodic surface plasmons Bragg gratings [J]. Chinese J Lasers, 2015, 42(8): 0808003.

孙林, 王小赛, 梁修业, 刘诚, 王继成. 非对称共振腔结构的可调等离子体诱导透明效应[J]. 激光与光电子学进展, 2016, 53(1): 012302. Sun Lin, Wang Xiaosai, Liang Xiuye, Liu Cheng, Wang Jicheng. Tunable Plasmonically Induced Transparency with Unsymmetrical Resonators[J]. Laser & Optoelectronics Progress, 2016, 53(1): 012302.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!