Photonic Sensors, 2016, 6 (3): 279, Published Online: Oct. 20, 2016   

Design and Optimization of Photonic Crystal Fiber for Liquid Sensing Applications

Author Affiliations
1 Department of Information and Communication Technology (ICT), Mawlana Bhashani Science and Technology University (MBSTU), Tangail-1902, Bangladesh
2 Department of Material and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology University (BUET), Dhaka-1000, Bangladesh
Abstract
This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.
References

[1] M. Arjmand and R. Talebzadeh, “Optical filter based on photonic crystal resonant cavity,” Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(1-2): 32-35.

[2] K. Fasihi, “High-contrast all-optical controllable switching and routing in nonlinear photonic crystals,” Journal of Lightwave Technology, 2014, 32(18): 3126-3131.

[3] K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang, et al., “Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide,” Applied Physics Letters, 2012, 100(20): 201102-1-201102-4.

[4] J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Optics Express, 2008, 16(6): 4177-4191.

[5] Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, et al., “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Letters, 2015, 15(3): 2001-2005.

[6] H. Xuan, J. Ma, W. Jin, and W. Jin, “Polarization converters in highly birefringent microfibers,” Optics Express, 2014, 22(3): 3648-3660.

[7] Y. H. Chang, Y. Y. Jhu, and C. J. Wu, “Temperature dependence of defect mode in a defective photonic crystal,” Optics Communications, 2012, 285(6): 1501-1504.

[8] Y. Liu and H. W. M. Salemink, “All-optical on-chip sensor for high refractive index sensing in photonic crystals,” Europhysics Letters, 2014, 107(3): 1160-1170.

[9] S. Zheng, Y. Zhu, and S. Krishnaswamy, “Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity,” Proc. SPIE, 2012, 8346(14): 1844-1864.

[10] C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Applied Optics, 2009, 48(10): 1797-1803.

[11] S. Olyaee and A. A. Dehghani, “Ultrasensitive pressure sensor based on point defect resonant cavity in photonic crystal,” Sensor Letters, 2013, 11(10): 1854-1859.

[12] Y. N. Zhang, Y. Zhao, and Q. Wang, “Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration,” Sensors and Actuators B: Chemical, 2013, 184(8): 179-188.

[13] M. Morshed, M. F. H. Arif, S. Asaduzzaman, and K. Ahmed, “Design and characterization of photonic crystal fiber for sensing applications,” European Scientific Journal, 2015, 11(12): 228-235.

[14] T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Optics Express, 2009, 17(3): 1518-1526.

[15] P. Hu, X. Dong, W. C. Wong, L. H. Chen, K. Ni, and C. C. Chan, “Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating,” Applied Optics, 2015, 54(10): 2647-2652.

[16] W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Optics Letters, 2013, 38(19): 3799-3802.

[17] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

[18] M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser-based photoacoustic ammonia sensors for industrial applications,” Applied Physics B, 2002, 75(2-3): 391-396.

[19] G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” Journal of Optics A: Pure and Applied Optics, 2003, 5(5): S140-S145.

[20] J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, et al., “Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy,” Journal of Sensors, 2009, 2009(2): 1-10.

[21] J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Optics Express, 2011, 19(3): 1921-1929.

[22] C. M. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, 2006, 14(26): 13056-13066.

[23] M. Morshed, H. M. Imarn, T. K. Roy, M. S. Uddinand, and S. A. Razzak, “Microstructure core photonic crystal fiber for gas sensing applications,” Applied Optics, 2015, 54(29): 8637-8643.

[24] H. Ademgil, “Highly sensitive octagonal photonic crystal fiber based sensor,” Optik-International Journal for Light and Electron Optics, 2014, 125(20): 6274-6278.

[25] K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Bio-Sensing Research, 2016, 7: 1-6.

[26] S. Asaduzzaman, K. Ahmed, M. F. H. Arif, and M. Morshed, “Proposal of simple structure photonic crystal fiber for lower indexed chemical sensing,” in 18th International Conference on Computer and Information Technology, MIST, Bangladesh, 2015.

[27] S. Asaduzzaman, K. Ahmed, and M. F. H. Arif, “Numerical analysis of O-PCF structure for sensing applications with high relative sensitivity,” in 2nd International Conference on Electrical Information and Communication Technology, KUET, Bangladesh, 2015.

[28] S. Asaduzzaman, K. Ahmed, M., M. F. H. Arif, and M. Morshed, “Application of microarray-core based modified photonic crystal fiber in chemical sensing,” in International Conference on Electrical and Electronic Engineering, RUET, Bangladesh, 2015.

[29] M. Morshed, M. I. Hasan, and S. M. A. Razzak, “Enhancement of the sensitivity of gas sensor based on microstructure optical fiber,” Photonic Sensors, 2015, 5(4): 312-320.

[30] S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Optical and Quantum Electronics, 2001, 33(4-5): 359-371.

[31] B. Q. Wu, Y. Lu, C. J. Hao, L. C. Duan, N. N. Luan, Z. Q. Zhao, et al., “December. hollow-core photonic crystal fiber based on C2H2 and NH3 gas sensor,” Applied Mechanics and Materials, 2013, 411: 1577-1580.

[32] G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Applied Optics, 1997, 36(7): 1540-1546.

[33] Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Applied Physics Letters, 2004, 85(22): 5182-5184.

[34] M. Luo, Y. G. Liu, Z. Wang, T. Han, Z. Wu, J. Guo, et al., “Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber,” Optics Express, 2013, 21(25): 30911-30917.

[35] R. M. Gerosa, D. H. Spadoti, C. J. de Matos, L. D. S. Menezes, and M. A. Franco, “Efficient and shortrange light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Optics Express, 2011, 19(24): 24687-24698.

[36] R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Optical Fiber Communications Conference, Anaheim, U.S.A., 2005.

[37] Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Applied Physics Letters, 2004, 85(22): 5182–5184.

[38] F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Optics Express, 2006, 14(9): 4135-4140.

Md. Faizul Huq ARIF, Kawsar AHMED, Sayed ASADUZZAMAN, Md. Abul Kalam AZAD. Design and Optimization of Photonic Crystal Fiber for Liquid Sensing Applications[J]. Photonic Sensors, 2016, 6(3): 279.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!