光电工程, 2017, 44 (6): 626, 网络出版: 2017-11-27   

可调量程拉绳式光纤布拉格光栅位移传感器

Adjustable range draw-wire type fiber Bragg grating displacement sensor
作者单位
1 燕山大学信息科学与工程学院,河北 秦皇岛 066004
2 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004
摘要
为了解决在复杂电磁环境下大位移量的监测问题,实现对大型机械和工程结构健康安全状况的实时监测,设计了一种基于悬臂梁结构的可调量程拉绳式光纤布拉格光栅位移传感器。悬臂梁两侧对称粘贴了两个不同中心波长的光纤光栅,当悬臂梁自由端的位置发生变化时,两个光纤光栅分别受到拉力和压力,因此光栅的中心波长向相反方向漂移。通过对两个中心波长差值与位移量关系的标定,可以排除温度的影响,实现对位移量的测量。传感器采用了拉绳式的位移传递方式,使得传感器的安装位置及测量方式更加灵活;便于拆装的位移转换装置,可以方便地调整传感器的量程,使其具有更广泛的适用性。位移传感实验结果表明,在传感器量程为60 mm时,位移传感器的平均灵敏度为47.7 pm/mm,相关系数达到0.998,重复性误差为2.83% FS,迟滞误差为1.02% FS。该位移传感器具有结构简单、量程可调的特点,可以满足不同环境下的位移测量需求。
Abstract
In order to solve the problem of displacement monitoring of health monitoring system in the complex electromagnetic environment, and realize the real-time monitoring of large mechanical and engineering struc-ture health and safety conditions, a novel fiber Bragg grating displacement sensor based on the structure of the cantilever beam is designed. Two fiber gratings with different central wavelengths are symmetrically pasted on the both sides of the cantilever beam. When the free end of the cantilever beam is changed, the two fiber grat-ings are respectively subjected to tension and pressure, which leads to the drift of the gratings center wavelength to the opposite directions. Through demarcating the relationship between the two center wavelength difference and displacement, it is possible to realize the measurement of the displacement. At the same time, the problem of cross sensitivity between temperature and displacement is solved. The sensor adopts draw-wire type dis-placement transmission mode, which makes the sensor installation location and measurement method more flexible. In addition, a smart device used to change the measuring range of the sensor is designed and it is also easy to be assem-bled and disassembled, so the whole sensor can be widely used. The experimental results show that when the range is 60 mm, the average sensitivity of the displacement sensor is 47.7 pm/mm,the correlation coefficient is 0.998, the repeatability error is 2.83% FS and the hysteresis error is 1.02% FS. The displacement sensor is char-acterized by simple structure and adjustable range, which can meet the demands of displacement measurement under different environments.
参考文献

[1] 吴晶, 吴晗平, 黄俊斌, 等. 用于船舶结构监测的大量程光纤布拉格光栅应变传感器[J]. 光学 精密工程, 2014, 22(2): 311–317.

    Wu Jing, Wu Hanping, Huang Junbin, et al. Large range FBG sensor for ship structure health monitoring[J]. Optics and Precision Engineering, 2014, 22(2): 311–317.

[2] 张燕君,王光宇,付兴虎. 长周期光纤光栅-布拉格光纤光栅多波长解调[J]. 光电工程, 2016, 43(8): 13–17.

    Zhang Yanjun, Wang Guangyu, Fu Xinghu. Multiple wavelength demodulation method of long period fiber grating and fiber Bragg grating[J]. Opto-Electronic Engineering, 2016, 43(8): 13–17.

[3] Marignetti F, de Santis D, Avino S, et al. Fiber Bragg grating sensor for electric field measurement in the end windings of high-voltage electric machines[J]. IEEE Transactions on In-dustrial Electronics, 2016, 63(5): 2796–2802.

[4] 刘波, 牛文成, 杨亦飞, 等. 基于光纤布喇格光栅传感器的精密位移测量[J]. 纳米技术与精密工程, 2005, 3(1): 53–55.

    Liu Bo, Niu Wencheng, Yang Yifei, et al. Exactitude dis-placement measurement based on fiber Bragg grating sen-sors[J]. Nanotechnology and Precision Engineering, 2005, 3(1): 53–55.

[5] 杨秀峰, 于汇, 王鹏, 等. 基于杠杆原理的新型光纤光栅微位移传感器[J]. 光电子·激光, 2010, 21(8): 1156–1158.

    Yang Xiufeng, Yu Hui, Wang Peng, et al. A novel micrometric displacement fiber grating sensor based on the principle of lever[J]. Journal of Optoelectronics·Laser, 2010, 21(8): 1156–1158.

[6] Berkovic G, Shafir E. Optical methods for distance and dis-placement measurements[J]. Advances in Optics and Pho-tonics, 2012, 4(4): 441–471.

[7] Falciai R, Trono C. Curved elastic beam with opposed fi-ber-Bragg gratings for measurement of large displacements with temperature compensation[J]. IEEE Sensors Journal, 2005, 5(6): 1310–1314.

[8] 崔留住, 江毅, 刘有海. 具有温度补偿的光纤位移传感器[J]. 光子学报, 2011, 40(11): 1667–1670.

    Cui Liuzhu, Jiang Yi, Liu Youhai. A fiber optic displacement sensor with temperature compensation[J]. Acta Photonica Sinica, 2011, 40(11): 1667–1670.

[9] Dias G L, Magalh es R R, Ferreira D D, et al. The use of a robotic arm for displacement measurements in a cantilever beam[J]. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2016, 6(3): 45–57.

[10] Shishkovski D, Petreski Z, Tasevski G. Development of system for displacement measurement of a cantilever beam with strain gauge sensor[J]. Mechanical Engineering-Scientific Journal, 2015, 33(2): 115–120.

[11] 吴入军, 郑百林, 付昆昆, 等. 表面粘贴式光纤布拉格光栅传感器层状结构对测量应变的影响[J]. 光学 精密工程, 2014, 22(12): 3183–3190.

    Wu Rujun, Zheng Bailin, Fu Kunkun, et al. Influence of layered structure for surface-bonded FBG sensor on meas-ured strain[J]. Optics and Precision Engineering, 2014, 22(12): 3183–3190.

[12] 张开玉, 赵洪, 张伟超, 等. 基于等应变梁的光纤光栅静电电压传感器[J]. 光学学报, 2015, 35(3): 63–70.

    Zhang Kaiyu, Zhao Hong, Zhang Weichao, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015, 35(3): 63–70.

[13] 张锦龙, 余重秀, 王葵如, 等. 一种新型温度自补偿的低成本位移传感解调系统[J]. 光电子 激光, 2008, 19(10): 1291–1293.

    Zhang Jinlong, Yu Chongxiu, Wang Kuiru, et al. A newtype low-cost displacement sensor with temperature self-compen-sation[J]. Journal of Optoelectronics·Laser, 2008, 19(10): 1291–1293.

[14] Liu Qinpeng, Jia Zhen’an, Fu Haiwei, et al. Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp[J]. IEEE Sensors Journal, 2016, 16(17): 6611–6616.

张燕君, 田永胜, 付兴虎, 毕卫红, 张亦男, 王会敏. 可调量程拉绳式光纤布拉格光栅位移传感器[J]. 光电工程, 2017, 44(6): 626. Yanjun Zhang, Yongsheng Tian, Xinghu Fu, Weihong Bi, Yinan Zhang, Huimin Wang. Adjustable range draw-wire type fiber Bragg grating displacement sensor[J]. Opto-Electronic Engineering, 2017, 44(6): 626.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!