改进的 CNN用于单帧红外图像行人检测的方法
[1] Nanda H , Davis L. Probabilistic template based pedestrian detection in infrared videos[C]//Intelligent Vehicle Symposium, IEEE, 2002:7712599.
[2] Bertozzi M, Broggi A, Grisleri P, et al. Pedestrian detection in infrared images[C]//IEEE Intelligent Vehicles Symposium, IEEE, 2003: 7883392.
[3] GAO Y , AI X , WANG Y , et al. U-V-Disparity based Obstacle Detection with 3D Camera and steerable filter[C]//Proc Intl Intelligent Vehicle Symposium, IEEE, 2011: 12095161.
[4] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] 许茗, 于晓升 , 陈东岳 , 等. 复杂热红外监控场景下行人检测 [J]. 中国图象图形学报, 2018, 23(12): 1829-1837. XU M, YU X S, CHEN D Y, et al. Man detection in complex thermal infrared monitoring scenes[J]. Chinese Journal of Image and Graphics, 2018, 23(12): 1829-1837.
[6] 谭康霞, 平鹏, 秦文虎 . 基于 YOLO模型的红外图像行人检测方法[J].激光与红外, 2018, 48(11): 1436-1442. TAN K X, PING P, QIN W H. Infrared image pedestrian detection method based on YOLO model[J]. Laser & Infrared, 2018, 48(11): 1436-1442.
[7] 陈恩加, 唐向宏, 傅博文. Faster R-CNN行人检测与再识别为一体的行人检索算法 [J].计算机辅助设计与图形学学报, 2019, 31(2): 332-339. CHEN E G, TANG X H, FU B W. Pedestrian Search Method Based on Faster R-CNN with the Integration of Pedestrian Detection and Re-identification[J]. Journal of Computer Aided Design & Graphics, 2019, 31(2): 332-339.
[8] 刘智嘉, 贾鹏, 夏寅辉 , 等. 基于红外与可见光图像融合技术发展与性能评价[J].激光与红外 , 2019, 49(5): 633-640. LIU Z J, JIA P, XIA Y H, et al. Development and performance evaluation of infrared and visible image fusion technology[J]. Laser & Infrared, 2019, 49(5): 633-640.
[9] 吴志洋, 卓勇, 李军, 等. 基于卷积神经网络的单色布匹瑕疵快速检测算法[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2262-2270. WU Z Y, ZHUO Y, LI J, et al. Fast detection algorithm of monochrome fabric defects based on convolution neural network[J]. Journal of Computer Aided Design & Graphics, 2018, 30(12): 2262-2270.
[10] 欧攀, 张正, 路奎, 等. 基于卷积神经网络的遥感图像目标检测 [J].激光与光电子学进展, 2019, 56(5): 74-80. OU P, ZHANG Z, LU K, et al. Remote sensing image target detection based on convolution neural network[J]. Laser & Optoelectronics Progress, 2019, 56(5): 74-80.
[11] Y. Lecun, L. Bottou, Y. Bengi, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[12] ZHENG Wu, Nathan Fuller, Diane Theriault, et al. IEEE Conference on Computer Vision and Pattern Recognition[DB/OL]. (2014-6-24) [2019-12-18]. http://csr.bu.edu/BU-TIV/BUTIV.html.
[13] 吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法 [J].模式识别与人工智能, 2017, 30(2): 97-105. LU Y B, ZHAO J W, CAO F L. Image denoising algorithm based on compound convolution neural network[J]. Pattern Recognition & Artificial Intelligence, 2017, 30(2): 97-105.
[14] Riad I. Hammoud. OTCBVS Benchmark Dataset Collection[DB/OL]. (2014-6-22)[2019-12-18]. http://vcipl-okstate.org/pbvs/bench/.
[15] Riad I. Hammoud. Terravic Motion IR Database[DB/OL]. (2014-6-22) [20192-12-18]. http://vcipl-okstate.org/pbvs/bench/Data/05/download. html.
[17] XU Y L, MA B P, HUANG R, et al. Person search in a scene by jointly modeling people commonness and person uniqueness[C]//Proceedings of the 22nd ACM International Conference on Multimedia, 2014: 937-940.
崔少华, 李素文, 黄金乐, 单巍. 改进的 CNN用于单帧红外图像行人检测的方法[J]. 红外技术, 2020, 42(3): 238. CUI Shaohua, LI Suwen, HUANG Jinle, SHAN Wei. A Method of Pedestrian Detection Based on Improved CNN in Single-frame Infrared Images[J]. Infrared Technology, 2020, 42(3): 238.