红外与激光工程, 2019, 48 (7): 0717007, 网络出版: 2019-08-07   

低温镜头能量集中度测试及其误差分析

Measurement and error analysis of encircled energy of cryogenic lens
作者单位
北京空间机电研究所 先进光学遥感技术北京市重点实验室, 北京 100094
摘要
低温镜头多用于深空低温环境下对暗弱点目标的探测, 能量集中度是评价该类镜头性能的重要指标。以采用热卸载设计的某红外低温镜头为实验目标, 设计了低温镜头能量集中度测试方案, 并对测试误差进行了分析。该方案采用星点靶标成像, 利用低温精密调焦技术实现对像点的精确采集, 通过高斯曲面拟合计算质心和两次反卷积数据处理, 实现了200 K低温下红外镜头的能量集中度测试。分析了测试系统的误差源并标定了各项误差值, 通过误差和不确定度分析得到了精确的测试结果。实验结果表明, 所述的低温镜头能量集中度测试精度优于7.5%, 具有工程应用价值。
Abstract
Cryogenic lens is usually used to detect faint point targets in deep space and low temperature environment. Encircled energy is an important index for evaluating such lens. An infrared cryogenic lens with thermal unloading structure was used as the test object. A test and error analysis scheme of encircled energy of cryogenic lens was designed. A point target was received after imaging by the lens and a cryogenic precision focusing technology was used to acquire data. Centroid extraction and Gaussian curve fitting and deconvolution had been applied to data processing. Encircled energy test was implemented of infrared lens at 200 K, and errors of the test system were analyzed and calibrated. Uncertainly analysis was also evaluated to improve the test accuracy. The experimental results show the test accuracy is better than 7.5%. The method can be used in engineering application.
参考文献

[1] 陆燕, 刘恩光, 谢荣建. 国外空间红外观测中的低温光学技术发展概况[J]. 真空与低温, 2011, 8(S1): 530-536.

    Lu Yan, Liu Enguang, Xie Rongjian. Development of cryogenic optical technology in space infrared observation[J]. Vacuum & Cryogenics, 2011, 8(S1): 530-536. (in Chinese)

[2] 刘伏龙, 李春林. 低温光学技术在航天遥感器上的应用研究[J]. 真空与低温, 2011, 8(S1): 537-543.

    Liu Fulong, Li Chunlin. Application of cryogenic optical technology in space remote sensor[J]. Vacuum & Cryogenics, 2011, 8(S1): 537-543. (in Chinese)

[3] Zhang Yue, Zhou Feng, Ruan Ningjuan, et al. Overview of cryogenic refrigeration technology in space infrared astronomical telescopes[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(5): 46-54. (in Chinese)

[4] Stephen M Volz, Russell B Schweickart, Bruce Heurich. Superfluid helium cryostat for the SIRTF cryogenic telescope assembly. IR space telescopes and instruments[C]//SPIE, 2003, 4850: 1038-1049.

[5] Masayuki H, Katsuhiro N, Shoji T, et al. Thermal design and its on-orbit performance of the AKARI cryostat[J]. Cryogenics, 2008, 48(5): 189-197.

[6] Michael T M, Marie B, Michael D, et al. Systems Engineering on the James Webb Space Telescope[C]//SPIE, 2010: 1002-1015.

[7] Peng Qingqing, Luo Shoujun, He Wubin. Assembling and alignment of cryogenic optical system atroom temperaturebased on phase compensation[J]. Laser & Infrared, 2013, 43(4): 433-437. (in Chinese)

[8] Zhou Chao. Opto-mechanical design for a cryogenic IR system[J]. Infrared and Laser Engineering, 2013, 42(8): 2092-2096. (in Chinese)

[9] Shen Mangzuo, Ma Wenli, Liao Sheng, et al. Development of a cryogenic optical system[J]. Acta Optica Sinica, 2001, 21(2): 202-205. (in Chinese)

[10] Zhang Haiyan, Guan Jianan, Zhuang Fulong, et al. Measurement and error analysis of low temperature deformationof infrared focal plane arrays[J]. Infrared and Laser Engineering, 2016, 45(5): 0504001. (in Chinese)

[11] Xiao Fugen, Liu Guoqing. The application of cryogenic engineering in aerospace[J]. Spacecraft Environment Engineering, 2002, 19(3): 10-19. (in Chinese)

[12] Yang Tianyuan, Zhou Feng, Xing Mailing. A method for calculating the energy concentration degree of pointtarget detection system[J]. Space Craft Recovery & Remote Sensing, 2017, 38(2): 41-47. (in Chinese)

宋俊儒, 邢辉, 裴景洋, 杨天远, 穆生博. 低温镜头能量集中度测试及其误差分析[J]. 红外与激光工程, 2019, 48(7): 0717007. Song Junru, Xing Hui, Pei Jingyang, Yang Tianyuan, Mu Shengbo. Measurement and error analysis of encircled energy of cryogenic lens[J]. Infrared and Laser Engineering, 2019, 48(7): 0717007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!