电光与控制, 2020, 27 (4): 38, 网络出版: 2020-06-15  

面向民用航空的SINS/DGPS组合导航融合方法

A Civil Aviation Oriented SINS/DGPS Fusion Method for Integrated Navigation
胡杰 1,2严勇杰 1,2石潇竹 1,2
作者单位
1 中国电子科技集团公司第二十八研究所, 南京 210007
2 空中交通管理系统与技术国家重点实验室, 南京 210007
摘要
针对单频点地基增强系统不能满足飞机CAT III类精密进近与着陆导航需求问题, 提出一种机载差分GPS(DGPS)与捷联式惯性导航系统(SINS)紧组合导航工作模式, 利用SINS提高组合后系统的导航特性。分析了SINS/DGPS紧组合滤波模型, 并构建了紧组合导航状态方程和量测方程, 利用改进的Kalman滤波器对滤波状态进行最优估计与补偿。进行了计算机仿真与实际系统验证实验, 实验结果表明, SINS/DGPS组合导航系统中, 当卫星信号不可用时, 利用SINS具备的自主性能够提高导航系统的连续性和可用性, 同时组合导航系统位置误差标准差相比机载DGPS单系统减小了50%以上, 提高了导航系统位置引导精度。
Abstract
To solve the problem that the single-frequency ground-based augmentation system cannot meet the requirements of precision approach and landing navigation of aircraft category III, a navigation mode which tightly integrates airborne Differential GPS (DGPS) with Strapdown Inertial Navigation System (SINS) is proposed, and SINS is used to improve the navigation characteristics of the integrated navigation system.The tightly integrated SINS/DGPS filtering model is analyzed, and the state equation and measurement equation of tightly integrated navigation are constructed.The filtering states are estimated and compensated by using the improved Kalman filter.Computer simulation and actual system validation experiments are carried out.The experiment results show that when the satellite signal is not available in SINS/DGPS integrated navigation system, the autonomy of SINS can improve the continuity and availability of the navigation system.Meanwhile, the standard deviation of position error of the integrated navigation system is reduced by more than 50% compared with that of the single airborne DGPS system, and the position guidance accuracy of the navigation system is improved.
参考文献

[1] 汪媛卿.低空环境下民用航空器精密进近算法研究[D].上海: 上海交通大学,2012.

    汪媛卿.低空环境下民用航空器精密进近算法研究[D].上海: 上海交通大学,2012.

[2] LEE J, PULLEN S, DATTA-BARUA S, et al.Real-time ionospheric threat adaptation using a space weather prediction for GNSS-based aircraft landing systems[J].IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1752-1761.

    LEE J, PULLEN S, DATTA-BARUA S, et al.Real-time ionospheric threat adaptation using a space weather prediction for GNSS-based aircraft landing systems[J].IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1752-1761.

[3] FELUX M, DAUTERMANN T, BECKER H.GBAS approach guidance performance-a comparison to ILS[C]// Proceedings of the International Technical Meeting of the Institute of Navigation, 2013: 4-9.

    FELUX M, DAUTERMANN T, BECKER H.GBAS approach guidance performance-a comparison to ILS[C]// Proceedings of the International Technical Meeting of the Institute of Navigation, 2013: 4-9.

[4] ENGE P.Local area augmentation of GPS for the precision approach of aircraft[J].Proceedings of the IEEE, 1999, 87(1): 111-132.

    ENGE P.Local area augmentation of GPS for the precision approach of aircraft[J].Proceedings of the IEEE, 1999, 87(1): 111-132.

[5] DAUTERMANN T, FELUX M, GROSCH A.Approach service type D evaluation of the DLR GBAS testbed[J].GPS Solutions, 2012, 16(3): 375-387.

    DAUTERMANN T, FELUX M, GROSCH A.Approach service type D evaluation of the DLR GBAS testbed[J].GPS Solutions, 2012, 16(3): 375-387.

[6] DAUTERMANN T, MAYER C, ANTREICH F, et al.Non-Gaussian error modeling for GBAS integrity assessment[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 693-706.

    DAUTERMANN T, MAYER C, ANTREICH F, et al.Non-Gaussian error modeling for GBAS integrity assessment[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 693-706.

[7] CIRCIU M S, MEURER M, FELUX M, et al.Evaluation of GPS L5 and Galileo E1 and E5a performance for future multi-frequency and multi-constellation GBAS[J].Journal of the Institute of Navigation, 2017, 64(1): 149-163.

    CIRCIU M S, MEURER M, FELUX M, et al.Evaluation of GPS L5 and Galileo E1 and E5a performance for future multi-frequency and multi-constellation GBAS[J].Journal of the Institute of Navigation, 2017, 64(1): 149-163.

[8] 李斌,王晓旺,胡耀坤.地基增强系统(GBAS)飞行试验分析[J].现代导航,2012, 3(1): 6-9.

    李斌,王晓旺,胡耀坤.地基增强系统(GBAS)飞行试验分析[J].现代导航,2012, 3(1): 6-9.

[9] XING Z D, ZHAO J B, WANG Z H, et al.Analysis and improvement to ionosphere grads integrity monitoring algorithm in ground based augmentation system[C]//Proceedings of Chinese Satellite Navigation Conference(CSNC), 2015: 237-247.

    XING Z D, ZHAO J B, WANG Z H, et al.Analysis and improvement to ionosphere grads integrity monitoring algorithm in ground based augmentation system[C]//Proceedings of Chinese Satellite Navigation Conference(CSNC), 2015: 237-247.

[10] HU J, SUN Q W, SHI X Z.Differential positioning algorithm for GBAS based on extended Kalman filtering[C]//Proceedings of the 13th World Congress on Inte-lligent Control and Automation(WCICA), 2018: 296-303.

    HU J, SUN Q W, SHI X Z.Differential positioning algorithm for GBAS based on extended Kalman filtering[C]//Proceedings of the 13th World Congress on Inte-lligent Control and Automation(WCICA), 2018: 296-303.

[11] WANG Z P, MACABIAU C, ZHANG J, et al.Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J].GPS Solutions, 2014, 18(1): 27-40.

    WANG Z P, MACABIAU C, ZHANG J, et al.Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J].GPS Solutions, 2014, 18(1): 27-40.

[12] HUANG Z G, HUANG Z G, ZHU Y B.A new optimal Hatch filter to minimize the effects of ionosphere gradients for GBAS[J].Chinese Journal of Aeronautics, 2008, 21(6): 526-532.

    HUANG Z G, HUANG Z G, ZHU Y B.A new optimal Hatch filter to minimize the effects of ionosphere gradients for GBAS[J].Chinese Journal of Aeronautics, 2008, 21(6): 526-532.

[13] [14]CHAN F C.A state dynamics method for integrated GPS/INS navigation and its application to aircraft precision approach[D].Chicago: Illinois Institute of Techno-logy, 2008.

    Federal Aviation Administration.Roadmap for perfor-mance-based navigation[Z].Washington, DC.: Federal Aviation Administration, 2006.

    [14]CHAN F C.A state dynamics method for integrated GPS/INS navigation and its application to aircraft precision approach[D].Chicago: Illinois Institute of Techno-logy, 2008.

    Federal Aviation Administration.Roadmap for perfor-mance-based navigation[Z].Washington, DC.: Federal Aviation Administration, 2006.

[14] 胡杰,石潇竹.载波相位平滑伪距在GPS/SINS紧组合导航系统中的应用[J].导航定位与授时,2018, 5(5): 32-38.

    胡杰,石潇竹.载波相位平滑伪距在GPS/SINS紧组合导航系统中的应用[J].导航定位与授时,2018, 5(5): 32-38.

[15] 李晓东,赵修斌,庞春雷,等.PBN概念下的GNSS/SINS组合导航完好性算法[J].电光与控制,2013, 20(1): 44-48.

    李晓东,赵修斌,庞春雷,等.PBN概念下的GNSS/SINS组合导航完好性算法[J].电光与控制,2013, 20(1): 44-48.

[16] GROSCH A, BELABBAS B, MEURER M.Redundant inertial-aided GBAS for civil aviation[C]//Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010: 1-6.]

    GROSCH A, BELABBAS B, MEURER M.Redundant inertial-aided GBAS for civil aviation[C]//Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010: 1-6.]

胡杰, 严勇杰, 石潇竹. 面向民用航空的SINS/DGPS组合导航融合方法[J]. 电光与控制, 2020, 27(4): 38. HU Jie, YAN Yongjie, SHI Xiaozhu. A Civil Aviation Oriented SINS/DGPS Fusion Method for Integrated Navigation[J]. Electronics Optics & Control, 2020, 27(4): 38.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!