光学学报, 2017, 37 (8): 0828002, 网络出版: 2018-09-07   

基于表面等离子体共振的双芯光子晶体光纤横向应力传感器 下载: 898次

Dual-Core Photonic Crystal Fiber Transverse-Stress Sensor Based on Surface Plasmon Resonance
作者单位
1 佛山科学技术学院物理与光电工程学院, 广东 佛山 528000
2 华中科技大学材料科学与工程学院, 湖北 武汉 430074
3 中国矿业大学信息与控制工程学院, 江苏 徐州 221116
引用该论文

吕健滔, 王春明, 朱晟昦, 刘海. 基于表面等离子体共振的双芯光子晶体光纤横向应力传感器[J]. 光学学报, 2017, 37(8): 0828002.

Jiantao Lü, Chunming Wang, Chenghao Zhu, Hai Liu. Dual-Core Photonic Crystal Fiber Transverse-Stress Sensor Based on Surface Plasmon Resonance[J]. Acta Optica Sinica, 2017, 37(8): 0828002.

参考文献

[1] Maier SA. Plasmonics: Fundamentals and applications[M]. New York: Springer, 2007.

    Maier SA. Plasmonics: Fundamentals and applications[M]. New York: Springer, 2007.

[2] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5): 874-881.

    Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5): 874-881.

[3] Powell C J, Swan J B. Effect of oxidation on the characteristic loss spectra of aluminum and magnesium[J]. Physical Review, 1960, 118(3): 640-643.

    Powell C J, Swan J B. Effect of oxidation on the characteristic loss spectra of aluminum and magnesium[J]. Physical Review, 1960, 118(3): 640-643.

[4] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960, 120(1): 130-136.

    Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960, 120(1): 130-136.

[5] Kretschmann E. The determination of the optical constants of metals by excitation of surface plasmons[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1971, 241(4): 313-324.

    Kretschmann E. The determination of the optical constants of metals by excitation of surface plasmons[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1971, 241(4): 313-324.

[6] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

    Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

[7] Poulton C G, Schmidt M A, Pearce G J, et al. Numerical study of guided modes in arrays of metallic nanowires[J]. Optics Letters, 2007, 32(12): 1647-1649.

    Poulton C G, Schmidt M A, Pearce G J, et al. Numerical study of guided modes in arrays of metallic nanowires[J]. Optics Letters, 2007, 32(12): 1647-1649.

[8] Hou J, Bird D, George A, et al. Metallic mode confinement in microstructured fibres[J]. Optics Express, 2008, 16(9): 5983-5990.

    Hou J, Bird D, George A, et al. Metallic mode confinement in microstructured fibres[J]. Optics Express, 2008, 16(9): 5983-5990.

[9] Schmidt M A. Sempere L N P, Tyagi H K, et al. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires[J]. Physical Review B, 2008, 77(3): 033417.

    Schmidt M A. Sempere L N P, Tyagi H K, et al. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires[J]. Physical Review B, 2008, 77(3): 033417.

[10] 关春颖, 苑立波, 史金辉. 微孔光纤表面等离子体共振传感特性分析[J]. 光学学报, 2011, 31(2): 0206003.

    关春颖, 苑立波, 史金辉. 微孔光纤表面等离子体共振传感特性分析[J]. 光学学报, 2011, 31(2): 0206003.

    Guan Chunying, Yuan Libo, Shi Jinhui. Microstructured-fiber surface plasmon resonance sensor[J]. Acta Optica Sinica, 2011, 31(2): 0206003.

    Guan Chunying, Yuan Libo, Shi Jinhui. Microstructured-fiber surface plasmon resonance sensor[J]. Acta Optica Sinica, 2011, 31(2): 0206003.

[11] 施伟华, 吴静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

    施伟华, 吴静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

    Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

    Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

[12] Zhang X, Wang R, Cox F M, et al. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers[J]. Optics Express, 2007, 15(24): 16270-16278.

    Zhang X, Wang R, Cox F M, et al. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers[J]. Optics Express, 2007, 15(24): 16270-16278.

[13] Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors[J]. Journal of the Optical Society of America B, 2007, 24(6): 1423-1429.

    Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors[J]. Journal of the Optical Society of America B, 2007, 24(6): 1423-1429.

[14] Akowuah E K, Gorman T, Ademgil H, et al. Numerical analysis of a photonic crystal fiber for biosensing applications[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

    Akowuah E K, Gorman T, Ademgil H, et al. Numerical analysis of a photonic crystal fiber for biosensing applications[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

吕健滔, 王春明, 朱晟昦, 刘海. 基于表面等离子体共振的双芯光子晶体光纤横向应力传感器[J]. 光学学报, 2017, 37(8): 0828002. Jiantao Lü, Chunming Wang, Chenghao Zhu, Hai Liu. Dual-Core Photonic Crystal Fiber Transverse-Stress Sensor Based on Surface Plasmon Resonance[J]. Acta Optica Sinica, 2017, 37(8): 0828002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!