光电工程, 2017, 44 (12): 1146, 网络出版: 2018-01-17   

飞秒激光过饱和掺杂硅材料的研究及发展

Research and development of femtosecond-laser hyperdoped silicon
作者单位
1 南开大学弱光非线性光子学教育部重点实验室,物理科学学院&泰达应用物理研究院,天津 300457
2 广西民族大学理学院,南宁 530006
引用该论文

贾子熙, 黄松, 进晓荣, 杨明, 陈战东, 姚江宏, 吴强, 许京军. 飞秒激光过饱和掺杂硅材料的研究及发展[J]. 光电工程, 2017, 44(12): 1146.

Zixi Jia, Song Huang, Xiaorong Jin, Ming Yang, Zhandong Chen, Jianghong Yao, Qiang Wu, Jingjun Xu. Research and development of femtosecond-laser hyperdoped silicon[J]. Opto-Electronic Engineering, 2017, 44(12): 1146.

参考文献

[1] Ertekin E, Winkler M T, Recht D, et al. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin[J]. Physical Review Letters, 2012, 108(2): 026401.

[2] Sher M J. Intermediate band properties of femtosecond-laser hyperdoped silicon[D]. Cambridge, Massachusetts: Harvard University, 2013.

[3] Sullivan J T, Simmons C B, Krich J J, et al. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon[J]. Journal of Applied Physics, 2013, 114(10): 103701.

[4] Ji Xu, Jiang Lan, Li Xiaowei, et al. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation[J]. Applied Surface Science, 2015, 326: 216–221.

[5] Gimpel T, Guenther K M, Kontermann S, et al. Current-voltage characteristic and sheet resistances after annealing of femtosecond laser processed sulfur emitters for silicon solar cells[J]. Applied Physics Letters, 2014, 105(5): 053504.

[6] Tull B R. Femtosecond laser ablation of silicon: nanoparticles, doping and photovoltaics[D]. Cambridge, Massachusetts: Harvard University, 2007.

[7] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850–1852.

[8] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673–1675.

[9] Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626–2629.

[10] Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon[J]. Applied Physics A, 2009, 96(2): 327–334.

[11] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Applied Physics A, 2004, 79(7): 1635–1641.

[12] Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation[J]. Materials Science and Engineering: B, 2007, 137(1–3): 289–294.

[13] Shao Hezhu, Li Yuan, Zhang Jinhu, et al. Physical mecha-nisms for the unique optical properties of chalco-gen-hyperdoped silicon[J]. Europhysics Letters, 2012, 99(4): 46005.

[14] Mo Yina, Bazant M Z, Kaxiras E. Sulfur point defects in crystalline and amorphous silicon[J]. Physical Review B, 2004, 70(20): 205210.

[15] Sanchez K, Aguilera I, Palacios P, et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al)[J]. Physical Review B, 2010, 82(16): 165201.

[16] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser puls-es[J]. Nature Materials, 2002, 1(4): 217–224.

[17] Anisimov S I, Kapeliovich B L, Perel’man T L. Electron emis-sion from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 1974, 39(2): 375–377.

[18] Lee S H, Lee J S, Park S, et al. Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers[J]. Numerical Heat Transfer, Part A: Applications, 2003, 44(8): 833–850.

[19] Sim H S, Lee S H, Kang K G. Femtosecond pulse laser interactions with thin silicon films and crater formation con-sidering optical phonons and wave interference[J]. Mi-crosystem Technologies, 2008, 14(9–11): 1439–1446.

[20] 杨明. 飞秒激光诱导硅表面微纳结构研究[D]. 天津: 南开大学, 2014: 25–62.

    Yang Ming. Femtosecond laser induced mi-cro-/nano-structures on silicon[D]. Tianjin: Nankai University, 2014: 25–62.

[21] Cavalleri A, Sokolowski-Tinten K, Bialkowski J, et al. Femto-second melting and ablation of semiconductors studied with time of flight mass spectroscopy[J]. Journal of Applied Physics, 1999, 85(6): 3301–3309.

[22] Yang Ming, Wu Qiang, Chen Zhandong, et al. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse[J]. Optics Letters, 2014, 39(2): 343–346.

[23] Huang Min, Zhao Fuli, Cheng Ya, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062–4070.

[24] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosec-ond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10): 104910.

[25] Bonse J, Rosenfeld A, Kruger J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of la-ser-induced periodic surface structures[J]. Applied Surface Science, 2011, 257(12): 5420–5423.

[26] Han Yanhua, Qu Shiliang. The ripples and nanoparticles on silicon irradiated by femtosecond laser[J]. Chemical Physics Letters, 2010, 495(4–6): 241–244.

[27] Garrelie F, Colombier J P, Pigeon F, et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Op-tics Express, 2011, 19(10): 9035–9043.

[28] Maier S A. Plasmonics: fundamentals and applications[M]. Boston, MA: Springer Science & Business Media, 2007.

[29] Silvestrelli P L, Alavi A, Parrinello M, et al. Ab initio molecular dynamics simulation of laser melting of silicon[J]. Physical Review Letters, 1996, 77(15): 3149–3152.

[30] Roeterdink W G, Juurlink L B F, Vaughan O P H, et al. Cou-lomb explosion in femtosecond laser ablation of Si(111)[J]. Applied Physics Letters, 2003, 82(23): 4190–4192.

[31] Stoian R, Rosenfeld A, Hertel I V, et al. Comment on "Coulomb explosion in femtosecond laser ablation of Si(111)"[Appl. Phys. Lett. 82, 4190 (2003)][J]. Applied Physics Letters, 2004, 85(4): 694–695.

[32] Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum[J]. Applied Physics Letters, 2004, 84(22): 4502–4504.

[33] Wu Zehua, Zhang Nan, Wang Mingwei, et al. Femtosecond laser ablation of silicon in air and vacuum[J]. Chinese Optics Letters, 2011, 9(9): 093201.

[34] Chen Zhandong, Wu Qiang, Yang Ming, et al. Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases[J]. Laser and Particle Beams, 2013, 31(3): 539–545.

[35] 陈战东. 飞秒激光改性硅材料的物理机理及其性质研究[D]. 天津: 南开大学, 2014: 58–79.

    Chen Zhandong. Study on the mechanisms and the proper-ties of femtosecond-laser processing silicon[D]. Tianjin: Nankai University, 2014: 58–79.

[36] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to- femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749–1761.

[37] Wendelen W, Mueller B Y, Autrique D, et al. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions[J]. Journal of Applied Physics, 2012, 111(11): 113110.

[38] Chuang T J. Multiple photon excited SF6 interaction with silicon surfaces[J]. The Journal of Chemical Physics, 1981, 74(2): 1453–1460.

[39] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 国防工业出版社, 1979.

    Liu Enke, Zhu Bingsheng, Luo Jinsheng. The physics of semiconductors[M]. Beijing: National Defense Industry Press, 1979.

[40] Zheng B, Michel J, Ren F Y G, et al. Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode[J]. Applied Physics Letters, 1994, 64(21): 2842–2844.

[41] Svrcek V, Sasaki T, Shimizu Y, et al. Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water[J]. Applied Physics Letters, 2006, 89(21): 213113.

[42] Wu C, Crouch C H, Zhao L, et al. Visible luminescence from silicon surfaces microstructured in air[J]. Applied Physics Letters, 2002, 81(11): 1999–2001.

[43] 朱世伟, 王磊, 陈兴, 等. 脉冲激光烧蚀法制备硅纳米颗粒及其光致发光特征[J]. 中国激光, 2010, 37(3): 882–886.

    Zhu Shiwei, Wang Lei, Chen Xing, et al. Synthesis and photoluminescence of silicon nanoparticles fabricated by pulse laser ablation[J]. Chinese Journal of Lasers, 2010, 37(3): 882–886.

[44] Emelyanov A V, Kazanskii A G, Khenkin M V, et al. Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation[J]. Applied Physics Letters, 2012, 101(8): 081902.

[45] Lü Quan, Wang Jian, Liang Cong, et al. Strong infrared photoluminescence from black silicon made with femtosecond laser irradiation[J]. Optics Letters, 2013, 38(8): 1274–1276.

[46] Chen Zhandong, Wu Qiang, Yang Ming, et al. Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air[J]. Optics Express, 2013, 21(18): 21329–21336.

[47] Huang Zhihong, Carey J E, Liu Mingguo, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89(3): 033506.

[48] Li X, Carey J E, Sickler J W, et al. Silicon photodiodes with high photoconductive gain at room temperature[J]. Optics Express, 2012, 20(5): 5518–5523.

[49] 冯国进. 飞秒激光微构造硅光学性质研究及实验装置[D]. 上海: 复旦大学, 2010.

    Feng Guojin. Optical properties of micro-structured silicon by femtosecond laser and equipment[D]. Shanghai: Fudan University, 2010.

[50] 李媛. 飞秒激光微构造硅的光电性质研究[D]. 上海: 复旦大学, 2012.

    Li Yuan. Optical properties of micro-structured silicon by femtosecond laser[D]. Shanghai: Fudan University, 2012.

[51] 吕振华. 红外吸收增强黑硅材料的研究与制备[D]. 长春: 吉林大学, 2013.

    Lü Zhenhua. Fabrication and investigation of black silicon of enhanced near-infrared absorption[D]. Changchun: Jilin University, 2013.

[52] Zhao Li, Wu Qiang, Zeng Qiang, et al. Sulfur-hyperdoped silicon photodetector with broadband spectral response and high gain at low bias[C]//Proceedings of 2016 Conference on Lasers and Electro-Optics, 2016: 1–2.

贾子熙, 黄松, 进晓荣, 杨明, 陈战东, 姚江宏, 吴强, 许京军. 飞秒激光过饱和掺杂硅材料的研究及发展[J]. 光电工程, 2017, 44(12): 1146. Zixi Jia, Song Huang, Xiaorong Jin, Ming Yang, Zhandong Chen, Jianghong Yao, Qiang Wu, Jingjun Xu. Research and development of femtosecond-laser hyperdoped silicon[J]. Opto-Electronic Engineering, 2017, 44(12): 1146.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!