激光与光电子学进展, 2017, 54 (12): 120002, 网络出版: 2017-12-11   

量子绝热捷径在受激拉曼绝热转移中的应用 下载: 1306次

Application of Quantum Shortcut to Adiabaticity in Stimulated Raman Adiabatic Transfer
作者单位
华南师范大学物理与电信工程学院广东省量子调控工程与材料重点实验室, 广东 广州 510006
摘要
量子绝热过程是制备和操控量子态的常用方法之一, 通常其需要较长的操作时间, 会引起退相干系统中操作保真度的快速下降。量子绝热捷径技术理论上可以通过抵消演化过程中的非绝热效应来实现对量子绝热过程的加速。当应用于受激拉曼绝热转移中时, 量子绝热捷径技术可以实现既快又好的量子操控。概述了量子绝热捷径技术的基本概念及实验进展, 重点介绍了其在受激拉曼绝热转移中的应用。
Abstract
Quantum adiabatic process is one of general ways to prepare and manipulate the quantum states, which usually needs long operation time and makes the manipulation fidelity drop fast in a dephasing system. Theoretically, the technology of quantum shortcut to adiabaticity is proposed to eliminate the non-adiabatic effects during its evolution, which can speed up the quantum adiabatic process. When the technology of quantum shortcut to adiabaticity is applied in the stimulated Raman adiabatic transfer, it can realize the fast and robust quantum control. The basic concept of the technology of quantum shortcut to adiabaticity and its experimental progress are summarized, and its application in the stimulated Raman adiabatic transfer is emphatically introduced.
参考文献

[1] Buluta I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation[J]. Reports on Progress in Physics, 2011, 74(10): 104401.

[2] Divincenzo D P. Quantum computation[J]. Science, 1995, 270(5234): 255-261.

[3] Zhu S L, Fu H, Wu C J, et al. Spin Hall effects for cold atoms in a light-induced gauge potential[J]. Physical Review Letters, 2006, 97(24): 240401.

[4] Lin Y J, Compton R L, Garcia K J, et al. Synthetic magnetic fields for ultracold neutral atoms[J]. Nature, 2009, 462(7273): 628-632.

[5] Muller H, Chiow S W, Long Q, et al. A new photon recoil experiment: towards a determination of the fine structure constant[J]. Applied Physics B: Lasers and Optics, 2006, 84(4): 633-642.

[6] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610.

[7] Vitanov N V, Halfmann T, Shore B W, et al. Laser-induced population transfer by adiabatic passage techniques[J]. Annual Reivew of Physical Chemistry, 2001, 52(1): 763-809.

[8] Kral P, Thanopulos I, Shapiro M. Colloquium: coherently controlled adiabatic passage[J]. Review of Modern Physics, 2007, 79(1): 53-77.

[9] Torrontegui E, Chen X, Modugno M, et al. Fast transport of Bose-Einstein condensates[J]. New Journal of Physics, 2012, 14(1): 013031.

[10] Demirplak M, Rice S A. Adiabatic population transfer with control fields[J]. Journal of Physical Chemistry A, 2003, 107(46): 9937-9945.

[11] Demirplak M, Rice S A. Assisted adiabatic passage revisited[J]. Journal of Physical Chemistry A, 2005, 109(14): 6838-6844.

[12] Berry M W. Transitionless quantum driving[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(36): 365303.

[13] Lewis H R, Riesenfeld W B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field[J]. Journal of Mathematical Physics, 1969, 10(8): 1458-1473.

[14] Salamon P, Hoffmann K H, Rezek Y, et al. Maximum work in minimum time from a conservative quantum system[J]. Physical Chemistry Chemical Physics, 2009, 11(7): 1027-1032.

[15] Hohenester U, Rekdal P K, Borzi A, et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps[J]. Physics Review A, 2007, 75(2): 023602.

[16] Grond J, Schmiedmayer J, Hohenester U. Optimizing number squeezing when splitting a mesoscopic condensate[J]. Physics Review A, 2009, 79(2): 021603.

[17] Grond J, von Winckel G, Schmiedmayer J, et al. Optimal control of number squeezing in trapped Bose-Einstein condensates[J]. Physics Review A, 2009, 80(5): 053625.

[18] Murphy M, Jiang L, Khaneja N, et al. High-fidelity fast quantum transport with imperfect controls[J]. Physics Review A, 2009, 79(2): 020301.

[19] Torrontegui E, Ibanez S, Martinez-Garaot S, et al. Shortcuts to adiabaticity[J]. Advances in Atomic Molecular and Optical Physics, 2013, 62(1): 117-169.

[20] Chen X, Lizuain I, Ruschhaupt A, et al. Shortcut to adiabatic passage in two- and three- level atoms[J]. Physical Review Letters, 2010, 105(12): 123003.

[21] Fasihi M A, Wan Y, Nakahara M. Non-adiabatic fast control of mixed states based on Lewis-Riesenfeld invariant[J]. Journal of the Physical Society of Japan, 2012, 81(2): 024007.

[22] Ruschhaupt A, Chen X, Alonso D, et al. Optimally robust shortcuts to population inversion in two-level quantum systems[J]. New Journal of Physics, 2012, 14(9): 093040.

[23] Lacour X, Guérin S, Jauslin H R. Optimized adiabatic passage with dephasing[J]. Physical Review A, 2008, 78(3): 033417.

[24] Dridi G, Guérin S, Hakobyan V, et al. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses[J]. Physical Review A, 2009, 80(4): 043408.

[25] Guérin S, Hakobyan V, Jauslin H R. Optimal adiabatic passage by shaped pulses: efficiency and robustness[J]. Physical Review A, 2011, 84(1): 013423.

[26] Chen X, Muga J G. Engineering of fast population transfer in three-level systems[J]. Physical Review A, 2012, 86(3): 033405.

[27] Giannelli L, Arimondo E. Three-level superadiabatic quantum driving[J]. Physical Review A, 2014, 89(3): 033419.

[28] Muga J G, Chen X, Ibáez S, et al. Transitionless quantum drivings for the harmonic oscillator[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2010, 43(8): 085509.

[29] del Campo A, Rams M M, Zurek W H. Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model[J]. Physical Review Letters, 2012, 109(11): 115703.

[30] Chen X, Ruschhaupt A, Schmidt S, et al. Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity[J]. Physical Review Letters, 2010, 104(6): 063002.

[31] Bowler R, Gaebler J, Lin Y, et al. Coherent diabatic ion transport and separation in a multizone trap array[J]. Physical Review Letters, 2012, 109(8): 080502.

[32] Sarandy M S, Duzzioni E I, Serra R M. Quantum computation in continuous time using dynamic invariants[J]. Physics Letters A, 2011, 375(38): 3343-3347.

[33] Lau H K, James D F V. Proposal for a scalable universal bosonic simulator using individually trapped ions[J]. Physical Review A, 2012, 85(6): 062329.

[34] Chen D Y, Zhang H C, Xu X P, et al. Nonadiabatic transport of cold atoms in a magnetic quadrupole potential[J]. Applied Physics Letters, 2010, 96(13): 134103.

[35] Ibáez S, Martínez-Garaot S, Chen X, et al. Shortcuts to adiabaticity for non-Hermitian systems[J]. Physical Review A, 2011, 84(2): 023415.

[36] del Campo A. Frictionless quantum quenches in ultracold gases: a quantum dynamical microscope[J]. Physical Review A, 2011, 84(3): 031606.

[37] Juliá-Díaz B, Torrontegui E, Martorell J, et al. Fast generation of spin-squeezed states in bosonic Josephson junctions[J]. Physical Review A, 2012, 86(6): 063623.

[38] Bason M G, Viteau M, Malossi N. High-fidelity quantum driving[J]. Nature Physics, 2012, 8(2): 147-152.

[39] Zhang J F, Shim J H, Niemeyer I, et al. Experimental implementation of assisted quantum adiabatic passage in a single spin[J]. Physical Review Letters, 2013, 110(24): 240501.

[40] Bergmann K, Theuer H, Shore B W. Coherent population transfer among quantum states of atoms and molecules[J]. Review of Modern Physics, 1998, 70(3): 1003-1025.

[41] Martin J, Shore B W, Bergmann K. Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results[J]. Physical Review A, 1996, 54(2): 1556-1569.

[42] Carroll C E, Hioe F T. Coherent population transfer via the continuum[J]. Physical Review Letters, 1992, 68(24): 3523-3526.

[43] Ivanov P A, Vitanov N V, Bergmann K. Effect of dephasing on stimulated Raman adiabatic passage[J]. Physical Review A, 2004, 70(6): 063409.

[44] Scala M, Militello B, Messina A, et al. Stimulated Raman adiabatic passage in an open quantum system: master equation approach[J]. Physical Review A, 2010, 81(5): 053847.

[45] Boradjiev I I, Vianov N V. Transition time in the stimulated Raman adiabatic passage technique[J]. Physical Review A, 2010, 82(4): 043407.

[46] Winkler K, Lang F, Thalhammer G. Coherent optical transfer of Feshbach molecules to a lower vibrational state[J]. Physical Review Letters, 2007, 98(4): 043201.

[47] Ye C C, Sautenkov V A, Rostovtsev Y V, et al. Fast optical switching via stimulated Raman adiabatic passage[J]. Optics Letters, 2003, 28(22): 2213-2215.

[48] Suptitz W, Duncan B C, Gould P L. Efficient 5D excitation of trapped Rb atoms using pulses of diode-laser light in the counterintuitive order[J]. Journal of the Optical Society of America B: Optical Physics, 1997, 14(5): 1001-1008.

[49] Cubel T, Teo B K, Malinovsky V S, et al. Coherent population transfer of ground-state atoms into Rydberg states[J]. Physical Review A, 2005, 72(2): 023405.

[50] Rousseaux B, Guerin S, Vitanov N V. Arbitrary qudit gates by adiabatic passage[J]. Physical Review A, 2013, 87(3): 032328.

[51] Moller D, Madsen L B, Molmer K. Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems[J]. Physical Review A, 2007, 75(6): 062302.

[52] Torosov B T, Guerin S, Vitanov N V. High-fidelity adiabatic passage by composite sequences of chirped pulses[J]. Physical Review Letters, 2011, 106(23): 233001.

[53] 周冬建, 郭敬为, 周灿华, 等. 基于双拉曼池的氢气后向拉曼散射及放大[J]. 中国激光, 2016, 43(4): 0402006.

    Zhou Dongjian, Guo Jingwei, Zhou Canhua, et al. Backward Raman scattering and amplification based on dual Raman cells[J]. Chinese J Lasers, 2016, 43(4): 0402006.

[54] Moller D, Madsen L B, Molmer K. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage[J]. Physical Review Letters, 2008, 100(17): 170504.

[55] Klein J, Beil F, Halfmann T. Robust population transfer by stimulated Raman adiabatic passage in a Pr3+∶Y2SiO5 crystal[J]. Physical Review Letters, 2007, 99(11): 113003.

[56] Du Y X, Liang Z T, Huang W, et al. Experimental observation of double coherent stimulated Raman adiabatic passages in three-level Λ systems in a cold atomic ensemble[J]. Physical Review A, 2014, 90(2): 023821.

[57] Du Y X, Liang Z T, Li Y C, et al. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms[J]. Nature Communications, 2016, 7: 12479-12485.

[58] Li Y C, Chen X. Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counterdiabatic driving[J]. Physical Review A, 2016, 94(6): 063411.

[59] Kang Y H, Wu Q C, Chen Y H, et al. Accelerating adiabatic quantum transfer for three-level Λ-type structure systems via picture transformation[J]. Annals of physics, 2017, 379: 102-111.

[60] Chen Y H, Xia Y, Song J. Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage[J]. Quantum Information Processing, 2013, 12(12): 3771-3783.

[61] Baksic A, Ribeiro H, Clerk A A. Speeding up adiabatic quantum state transfer by using dressed states[J]. Physical Review Letters. 2016, 116(23): 230503.

[62] Zhou B B, Baksic A, Ribeiro H, et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system[J]. Nature Physics, 2016, 13(4): 330-334.

杜炎雄, 杨金波, 吕庆先, 颜辉. 量子绝热捷径在受激拉曼绝热转移中的应用[J]. 激光与光电子学进展, 2017, 54(12): 120002. Du Yanxiong, Yang Jinbo, Lü Qingxian, Yan Hui. Application of Quantum Shortcut to Adiabaticity in Stimulated Raman Adiabatic Transfer[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!