红外与激光工程, 2019, 48 (4): 0406004, 网络出版: 2019-07-23   

混沌脉冲激光雷达水下目标探测

Underwater target detection of chaotic pulse laser radar
作者单位
1 北京空间机电研究所, 北京 100094
2 中国空间技术研究院 空间激光信息感知技术核心专业实验室, 北京 100094
3 太原理工大学 物理与光电工程学院, 山西 太原 030024
摘要
海水对光波的吸收和散射, 严重制约了激光雷达水下目标探测的性能。通过对激光在海水传输过程中产生后向散射的定量分析, 说明了激光回波信号被海水后向散射影响的严重性。分析比较了距离选通技术和强度调制技术抑制海水后向散射的能力, 提出了使用自身具有高频强度调制特性的混沌脉冲激光进行水下目标探测, 设计了基于相关法测距的混沌脉冲激光雷达水下目标探测方案。通过对后向散射光以及带有不同后向散射强度的回波信号光的时域和频域特性的研究, 使用互相关噪声水平算法判定混沌脉冲激光雷达抑制海水后向散射的能力。理论仿真分析表明, 当后向散射光强度是混沌脉冲激光强度36倍时, 仍能提取出目标信号。
Abstract
Absorption and scattering of seawater for light waves seriously restrict the performance of laser radar for underwater target detection. Quantitative analysis of laser backscattering generated by seawater shows that the laser echo signal is seriously affected by seawater backscattering. The ability of range-gated technology and intensity modulation technology to suppress backscattering of seawater was analyzed and compared. A chaotic pulse laser with high frequency intensity modulation was proposed for underwater target detection and the scheme was designed. Based on the study of the characteristics of backscattering light and echo signal with different backscattering intensity in time and frequency domain, the ability of chaotic pulse lidar to suppress backscattering from seawater was determined by using cross-correlation noise level algorithm. The theoretical analysis shows that the target signal can still be extracted when the backscattered light intensity is 36 times that of the chaotic pulse laser.
参考文献

[1] Victor I F. Lidars for oceanological research: criteria for comparison, main limitations, perspectives[C]//SPIE, 1992, 1750: 472-484.

[2] Larocque P, Banic J R, Cunningham A G. Design description and field testing of the SHOALS-1000T airborne bathymeter[C]//SPIE, 2004, 5412: 162-184.

[3] Viktor I F, Yuri K, Joong Y Park, et al. Particularities of hydro lidar missions in the Asia-Pacific region[C]//SPIE, 2014, 9262: 92620X.

[4] Park J Y, Tuell G H. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images [C]//SPIE, 2010, 7695: 851976.

[5] RIEGL surveying Technology (Beijing) Co., Ltd. Lidar system for surface-land joint survey [EB/OL]. 2017-01-12 [2018-06-08]. http://www.ilidar.com. (in Chinese)

[6] Mullen L, Cochenour B, Rabinovich W, et al. Backscatter suppression for underwater modulating retroreflector links using polarization discrimination[J]. Applied Optics, 2009, 48(2): 328-337.

[7] Li J Z. Handbook of Optics[M]. Taiyuan: Shanxi Science and Technology Press, 2010. (in Chinese)

[8] Fournier G R, Bonnier D, Forand J L, et al. Range-gated underwater laser imaging system[J]. Optical Engineering, 1993, 32: 2185-2190.

[9] Qian W X, Bai L F, Chen Q, et al. Theoretical study on back-scattering model of laser′s transmission underwater based on frequency domain[J]. Infrared and Laser Engineering, 2006, 35(4): 442-444. (in Chinese)

[10] Cochenour B, Mullen L, Muth J. A modulated pulse laser for underwater detection, ranging, imaging, and communications[C]// SPIE, 2012, 8372: 83720S.

[11] Laux A, Mullen L, Perez P, et al. Under laser range finder[C]//SPIE, 2012, 8372: 83721B.

[12] Perez P, Mullen L, Laux A. Techniques to enhance the performance of hybrid lidar-radar ranging systems[J]. IEEE, 2012: 1-6.

[13] Cochenour B, Mullen L, Muth J. Modulated pulse laser with pseudorandom coding apabilities for underwater ranging, detection, and imaging[J]. Applied Optics, 2011, 50(33):6168-6178,

[14] Ma Yong, Ji Hang, Liang Kun, et al. Application of modulated lidar on optical carrier for ocean exploration [J]. Laser Technology, 2008, 32(4): 346-349. (in Chinese)

[15] Mullen L, Contarino V. Hybrid LIDAR-radar: Seeing through the scatter[J]. Microwave Magazine, IEEE, 2000, 1(3): 42-48.

[16] Mullen L, Laux A, Cochenour B, et al. Demodulation techniques for the amplitude modulated laser imager [J]. Applied Optics, 2007, 46(30): 7374-7383.

[17] Wang Yuncai, Gong Tian′an. Review of chaotic optical communication and chaotic laser ranging[J]. Optics & Optoelectronic Technology, 2009, 7(1): 1-6. (in Chinese)

[18] Wu Yuan, Wang Bingjie, Wang Yuncai, et al. Research progress in applications of chaotic laser[J]. Laser & Optoelectronics Progress, 2015, 52(6): 060005. (in Chinese)

[19] Wang B J. Research on chaotic laser radar technology [D]. Taiyuan: Taiyuan University of Technology, 2012. (in Chinese)

[20] Wang Yuncai, Zhang Jingguo, Xu Hang, et al. Optical time domain reflectometer based on the chaotic signal[J]. Optical Instruments, 2014, 36(5): 449-454. (in Chinese)

[21] Rumbaugh L K, Bolt E M, Jemison W D. A 532 nm chaotic lidar transmitter for high resolution underwater ranging and imaging[J]. Oceans, 2013, 71(2): 1-6.

[22] Yan Fanjiang, Zheng Yongchao, Tao Yuliang. Analysis and prospects of laser technology of space-borne range measurement system [J]. Spacecraft Recovery & Remote Sensing, 2012, 33(4): 70-77. (in Chinese)

沈振民, 赵彤, 王云才, 郑永超, 尚卫东, 王冰洁, 李静霞. 混沌脉冲激光雷达水下目标探测[J]. 红外与激光工程, 2019, 48(4): 0406004. Shen Zhenmin, Zhao Tong, Wang Yuncai, Zheng Yongchao, Shang Weidong, Wang Bingjie, Li Jingxia. Underwater target detection of chaotic pulse laser radar[J]. Infrared and Laser Engineering, 2019, 48(4): 0406004.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!