中国激光, 2017, 44 (5): 0502003, 网络出版: 2017-05-03   

奥氏体不锈钢光纤激光同轴保护焊接的实时监测 下载: 507次

Real-Time Monitoring of Coaxial Protection Fiber Laser Welding of Austenitic Stainless Steels
作者单位
北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
摘要
采用光纤激光同轴保护焊接奥氏体不锈钢,利用激光焊接监测系统同步采集焊接过程中的光信号数据,并结合羽辉的形貌研究不同焊接条件对焊缝成形及光信号强度的影响规律。研究结果表明,光信号强度随着激光功率的增加逐渐增大。当离焦量从-6 mm变化到6 mm时,光信号强度先减小后增大。光信号变化可反映焊缝熔深的变化,可用于检测搭接间隙和焊缝位置变化引起的焊缝缺陷。通过P信号数据可判断焊接质量异常区的准确位置,焊接过程中光信号的强度同羽辉体积正相关。
Abstract
The austenitic stainless steel is welded with the fiber laser and coaxial protection method. The optical signals during the welding process are collected by the laser welding and synchronously monitoring system, which is combined with the shape of plume to study the influence laws of different welding conditions on the weld formation and optical signal intensity. The results show that the optical signal intensity gradually increases with the increase of laser power. When the defocusing amount changes from -6 mm to 6 mm, the optical signal intensity decreases first and then increases. The optical signal change can reflect the change of weld penetration, which can be used to detect the weld defects caused by the change of the lap gap and the weld position. The exact location of the area with the abnormal welding quality can be judged by analyzing P signal data. The optical signal intensity is positively related to the plume volume during the welding process.
参考文献

[1] 左铁钏. 21世纪的先进制造--激光技术与工程[M]. 北京: 科学出版社, 2007: 9-12.

[2] Katayama S, Nagayama H, Mizutani M, et al. Fibre laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 744-752.

[3] 陈武柱. 激光焊接与切割质量控制[M]. 北京: 机械工业出版社, 2010: 34-62.

[4] 陈根余, 夏海龙, 周 聪, 等. 高功率光纤激光焊接底部驼峰的机理研究[J]. 中国激光, 2015, 42(2): 0203004.

    Chen Genyu, Xia Hailong, Zhou Cong, et al. Study on the mechanism of root humping of laser welding with high power fiber laser[J]. Chinese J Lasers, 2015, 42(2): 0203004.

[5] Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749-753.

[6] Park Y W, Park H, Rhee S, et al. Real time estimation of CO2 laser weld quality for automotive industry[J]. Optics and Laser Technology, 2002, 34(2): 135-142.

[7] Bardin F, Cobo A, Lopez-Higuera J M, et al. Optical techniques for real-time penetration monitoring for laser welding[J]. Applied Optics, 2005, 44(19): 3869-3876.

[8] Olsson R, Eriksson I, Powell J, et al. Challenges to the interpretation of the electromagnetic feedback from laser welding[J]. Optics and Lasers in Engineering, 2011, 49(2): 188-194.

[9] Eriksson I, Powell J, Kaplan A F H. Signal overlap in the monitoring of laser welding[J]. Measurement Science and Technology, 2010, 21(10): 105705.

[10] Kaplan A F H, Norman P, Eriksson I. Analysis of the keyhole and weld pool dynamics by imaging evaluation and photodiode monitoring[C]. Proceedings of LAMP2009, 2009: 1-6.

[11] 姜 梦, 陶 汪, 陈彦宾, 等. 真空激光焊接焊缝成形及等离子体特征[J]. 中国激光, 2016, 43(4): 0403010.

    Jiang Meng, Tao Wang, Chen Yanbin, et al. Characteristics of bead formation and plasma plume in fiber laser welding under vacuum[J]. Chinese J Lasers, 2016, 43(4): 0403010.

[12] Wang T, Gao X D, Seiji K, et al. Study of dynamic features of surface plasma in high-power disk laser welding[J]. Plasma Science and Technology, 2012, 14(3): 245-251.

[13] Sibillano T, Ancona A, Berardi V, et al. Real-time monitoring of laser welding by correlation analysis: The case of AA5083[J]. Optics and Lasers in Engineering, 2007, 45(10): 1005-1009.

[14] Zhang X D, Chen W Z, Ashida E, et al. Relationship between weld quality and optical emissions in underwater Nd∶YAG laser welding[J]. Optics and Lasers in Engineering, 2004, 41(5): 717-730.

[15] You D Y, Gao X D, Katayama S. A novel stability quantification for disk laser welding by using frequency correlation coefficient between multiple-optics signals[J]. IEEE-ASME Transactions on Mechatronics, 2015, 20(1): 327-337.

[16] Colombo D, Previtali B. Through optical combiner monitoring of fiber laser processes[J]. International Journal of Material Forming, 2010, 3(s1): 1123-1126.

[17] Colombo D, Colosimo B M, Previtali B. Comparison of methods for data analysis in the remote monitoring of remote laser welding[J]. Optics and Lasers in Engineering, 2013, 51(1): 34-46.

[18] Shcheglov P Y, Uspenskiy S A, Gumenyuk A V, et al. Plume attenuation of laser radiation during high power fiber laser welding[J]. Laser Physics Letters, 2011, 8(6): 475-480.

[19] Kawahito Y, Matsumoto N, Mizutani M, et al. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Science and Technology of Welding and Joining, 2008, 13(8): 744-758.

[20] Gao M, Chen C, Hu M, et al. Characteristics of plasma plume in fiber laser welding of aluminum alloy[J]. Applied Surface Science, 2015, 326: 181-186.

[21] 李时春. 万瓦级激光深熔焊接中金属蒸气与熔池耦合行为研究[D]. 湖南: 湖南大学, 2014: 75-84.

    Li Shichun. Study on the coupling behavior between metallic vapor and melt pool during deep penetration welding with 10-kW level laser[D]. Hunan: Hunan University, 2014: 75-84.

[22] 李时春, 陈根余, 周 聪, 等. 万瓦级光纤激光焊接小孔内外等离子体研究[J]. 物理学报, 2014, 63(10): 104212.

    Li Shichun, Chen Genyu, Zhou Cong, et al. Plasma inside and outside keyhole during 10 kW level fiber laser welding[J]. Acta Physica Sinica, 2014, 63(10): 104212.

[23] Forsman T, Powell J, Magnusson C. Process instability in laser welding of aluminum alloys at the boundary of complete penetration[J]. Journal of Laser Applications, 2001, 13(5): 193-198.

任勇, 武强, 邹江林, 陈乐, 肖荣诗. 奥氏体不锈钢光纤激光同轴保护焊接的实时监测[J]. 中国激光, 2017, 44(5): 0502003. Ren Yong, Wu Qiang, Zou Jianglin, Chen Le, Xiao Rongshi. Real-Time Monitoring of Coaxial Protection Fiber Laser Welding of Austenitic Stainless Steels[J]. Chinese Journal of Lasers, 2017, 44(5): 0502003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!