光学与光电技术, 2017, 15 (2): 1, 网络出版: 2017-05-09   

材料设计以及界面与器件工程最适化以实现高性能聚合物和钙钛矿太阳能电池

Rational Material, Interface, and Device Engineering for High-Performance Polymer and Perovskite Solar Cells
作者单位
美国华盛顿大学(西雅图)材料科学与工程系, 华盛顿 98195-2120, 美国
摘要
有机聚合物和钙钛矿杂化物在合成控制、加工及属性调控的进展显著地增强了其太阳能电池性能。聚合物和杂化太阳能电池的性能十分依赖材料吸收光子、激子离解、电荷传输以及在金属/有机/金属氧化物或金属/钙钛矿/金属氧化物界面的电荷收集的效率。介绍了如何通过有效地整合材料设计以及界面与器件工程以显著提高聚合物和杂化钙钛矿型太阳能电池性能(转换效率>18%)。还介绍了一些关于制备串联和半透明太阳能电池的新型器件结构和光学工程策略,以发挥聚合物和钙钛矿太阳能电池的最大潜能。
Abstract
Advances in controlled synthesis, processing, and tuning of the properties of organic conjugated polymers and perovskites have enabled significantly enhanced performance of organic and hybrid electronic devices. The performance of polymer and hybrid solar cells is strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. In this paper, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells (PCE of >18%) will be discussed. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.
参考文献

[1] Wehrenfenning C, Eperon G E, Johnston M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Adv. Mater., 2014, 26(10): 1584-1589.

[2] Berry J, T Buonassisi, DA Egger, et al. Hybrid organic-inorganic perovskites (HOIPs): Opportunities and challenges[J]. Adv. Mater., 2015, 27: 5102-5112.

[3] Liang P W, Liao C Y, Chueh C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv. Mater., 2014, 26: 3748-3754.

[4] Chu-Chen Chueh, Chien-Yi Liao, Fan Zuo, et al. The roles of alkyl halide additives in enhancing perovskite solar cell performance[J]. J. Mater. Chem. A, 2015, 3: 9058-9062.

[5] Liang P W, Chueh C C, Xin X K, et al. High-performance planar-heterojunction solar cells based on ternary halide large band- gap perovskites[J]. Adv. Energy Mater., 2015, 5: 1400960.

[6] Zuo F, Williams S T, Liang P W, et al. Binary-metal perovskites toward high-performance plannar-heterojunction hybrid solar cells[J]. Adv. Mater., 2014, 26: 6454.

[7] Wojciechowski K, Stranks S D, Abate A, et al. Heterojunction modification for highly efficient organic inorganic perovskite solar cells[J]. ACS Nano., 2014, 8: 12701-12709.

[8] J H Kim, C Chueh, S T Williams, et al. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells[J]. Nanoscale, 2015, 7: 17343.

[9] Liang P W, Chueh C C, Williams S T, et al. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells[J]. Adv. Energy Mater., 2015, 5: 1402321.

[10] Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv. Mater., 2015, 27: 695- 701.

[11] Jung J W, Chueh C C, Jen AKY. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J]. Adv. Mater., 2015, 27: 7874-7880.

[12] Hong Zhang, Jiaqi Cheng, Francis Lin, et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility[J]. ACS Nano., 2016, 10(1): 1503-1511.

[13] Z B Yang, C C Chueh, F Zuo, et al. High-performance fully printable perovskite solar cells via blade-coating technique in ambient condition[J]. Adv. Energy Mater., 2015, 5(13): 1500328.

[14] Jae Woong Jung, Chu Chen Chueh, Alex K Y Jen. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Adv. Energy Mater., 2015, 5: 1500486.

任广禹. 材料设计以及界面与器件工程最适化以实现高性能聚合物和钙钛矿太阳能电池[J]. 光学与光电技术, 2017, 15(2): 1. Alex Jen. Rational Material, Interface, and Device Engineering for High-Performance Polymer and Perovskite Solar Cells[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(2): 1.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!