激光与光电子学进展, 2017, 54 (1): 010603, 网络出版: 2017-01-17   

基于相位掩模法的高阶布拉格波导光栅特性

Characteristics of High-Order Bragg Waveguide Grating Based on Phase-Mask Method
作者单位
天津理工大学计算机与通信工程学院天津市薄膜电子与通信器件重点实验室教育部通信器件与技术工程研究中心, 天津 300384
摘要
对基于相位掩模法的高阶布拉格(Bragg)波导光栅的特性进行了研究, 不同阶数Bragg波导光栅的谐振波长均随饱和系数的增大而增大。综合考虑光栅阶数、相位掩模板衍射效率及饱和系数对Bragg波导光栅折射率调制幅度的影响, 当Bragg波导光栅阶数为2, 且饱和系数为0.67时折射率调制幅度达到最大, 此时Bragg波导光栅的最大反射率最大, 零值带宽最大。随着光栅长度的增大, 最大反射率增大, 零值带宽减小。波导光栅的饱和系数随写入光强与刻写时间乘积的增大而增大, 当此乘积为160 s·W/cm2时饱和系数为0.67, 因此可以通过控制写入光强与刻写时间使饱和系数达到最优。
Abstract
The characteristics of high-order Bragg waveguide grating based on phase-mask method are investigated, and the resonant wavelengths of Bragg waveguide grating with different orders all increase with the increasing of saturation coefficient. Influences of the order of grating, diffraction efficiency of phase mask and saturation coefficient on the refractive index modulation of Bragg waveguide grating are taken into consideration synthetically. The largest refractive index modulation amplitude can be acquired when the order of Bragg waveguide grating is 2 and the saturation coefficient is 0.67. In this case, the maximum reflection and the zero bandwidth of Bragg waveguide grating can reach the maximum. The maximum reflection increases and the zero bandwidth decreases with the increasing of grating length. The saturation coefficient of waveguide grating increases with the product of the writing beam intensity and the writing time. The saturation coefficient is 0.67 when the product is equal to 160 s·W/cm2. The optimal saturation coefficient can be acquired by controlling the writing beam intensity and the writing time.
参考文献

[1] Jin S L, Xu L T, Li Y F. Spatially modulated gain erbium-doped Ti∶LiNbO3 waveguide laser[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1515-1517.

[2] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi, 2004, 201(2): 253-283.

[3] Korkishko N Y, Fedorov A V, Feoktistova O Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange[J]. Journal of Lightwave Technology Photonics, 2000, 18(4): 562-568.

[4] Busacca A C, Sones C L, Eason R W, et al. First-order quasi-phase-matched blue light generation in surface-poled Ti∶indiffused lithium niobate waveguides[J]. Applied Physics Letters, 2004, 84(22): 4430-4432.

[5] 张 明, 任建文, 陈 文, 等. 光折变长周期波导光栅耦合器的设计和分析[J]. 光学学报, 2015, 35(3): 0313002.

    Zhang Ming, Ren Jianwen, Chen Wen, et al. Design and analysis of photorefractive long-period waveguide grating coupler[J]. Acta Optica Sinica, 2015, 35(3): 0313002.

[6] 张爱玲, 何培栋, 潘洪刚, 等. 电控可调谐的正交偏振双波长滤波的设计[J]. 激光与光电子学进展, 2015, 52(7): 072301.

    Zhang Ailing, He Peidong, Pan Honggang, et al. Design of electrically controlled double wavelength orthogonal polarization tunable filter[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072301.

[7] 张爱玲, 孙钦芳, 闫广拓. 双边调制Bragg波导光栅的特性研究[J]. 激光与光电子学进展, 2016, 53(6): 060603.

    Zhang Ailing, Sun Qinfang, Yan Guangtuo. Characteristics of the double-side modulation waveguide Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060603.

[8] Kip D, Hukriede J, Runde D. Holographic reflection filters in photorefractive LiNbO3 channel waveguides[C]. Lumrs International Conference on Electronic Materials, 2002, 39(1): 191-234.

[9] Benkelfat B E, Ferrière R, Wacogne B, et al. Technological implementation of Bragg grating reflectors in Ti∶LiNbO3 waveguides by proton exchange[J]. IEEE Photonics Technology Letters, 2002, 14(10): 1430-1432.

[10] Grobnic D, Mihailov S J, Smelser C W, et al. Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1453-1455.

[11] 傅克祥, 王植恒, 文 军, 等. 位相光栅的衍射级次[J]. 光学学报, 1998, 18(7): 870-876.

    Fu Kexiang, Wang Zhiheng, Wen Jun, et al. Diffractive grade of phase gratings[J]. Acta Optica Sinica, 1998, 18(7): 870-876.

[12] 张国平, 叶嘉雄, 李再光. 二元光学元件的耦合波分析[J]. 光电工程, 1997, 24(2): 18-22.

    Zhang Guoping, Ye Jiaxiong, Li Zaiguang. The coupled-wave analysis of binary optical elements[J]. Opto-Electronic Engineering, 1997, 24(2): 18-22.

[13] 刘 全, 吴建宏. 光栅的衍射理论与耦合波理论的分析比较[J]. 激光杂志, 2004, 25(2): 31-34.

    Liu Quan, Wu Jianhong. Analysis and comparison of the scalar diffraction theory and coupled-wave theory about grating[J]. Laser Journal, 2004, 25(2): 31-34.

[14] Xie W X, Douay M, Bernage P, et al. Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres[J]. Optics Communications, 1993, 101(1-2): 85-91.

[15] Hongzhi J, Yulin L. First- and second-order diffraction characteristics of fiber Bragg gratings[J]. Optics Communications, 2000, 178(4): 339-343.

[16] Chen F S, Denton R T, Nassau K, et al. Optical memory planes using LiNbO3 and LiTaO3[J]. Proceedings of the IEEE, 1968, 56(4): 782-783.

[17] 刘思敏, 郭 儒, 许京军. 光折变非线性光学及应用[M]. 北京: 科学出版社, 2004: 35.

    Liu Simin, Guo Ru, Xu Jingjun. Photorefractive effect nonlinear optics and application[M]. Beijing: Science Press, 2004: 35.

[18] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

张爱玲, 田红苗, 李青青, 王钊. 基于相位掩模法的高阶布拉格波导光栅特性[J]. 激光与光电子学进展, 2017, 54(1): 010603. Zhang Ailing, Tian Hongmiao, Li Qingqing, Wang Zhao. Characteristics of High-Order Bragg Waveguide Grating Based on Phase-Mask Method[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010603.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!