太赫兹科学与电子信息学报, 2019, 17 (1): 174, 网络出版: 2019-04-07  

金属表面形貌对真空击穿阈值的影响

Influence of metal surface morphology on the threshold of vacuum breakdown
作者单位
1 西北核技术研究所 高功率微波技术重点实验室,陕西 西安 710024
2 上海交通大学 物理与天文学院,上海 200240
摘要
探索提高真空击穿阈值的方法,对脉冲功率技术的发展和应用具有重要意义。在金属表面电子发射理论分析的基础上,采用有限元法计算电极表面电场随二极管电压的变化规律,设计实验系统,并开展实验研究。实验对比钛合金TC4阴极在不同表面粗糙度下真空击穿阈值,实验表明,当阴极表面粗糙度(轮廓最大高度Rz)分别为26.13?m,10.41?m,6.75?m,1.12?m,0.13?m时,击穿阈值分别为306?kV/cm,345?kV/cm,358?kV/cm,392?kV/cm,428?kV/cm。当Rz由26.13?m减小至0.13?m时,击穿阈值提高39%。金属表面击穿阈值随Rz减小而提高,减小金属表面的Rz,是提高真空击穿阈值的有效方法。
Abstract
It is important for the development and application of pulsed power technology to explore the way to improve vacuum breakdown threshold. On the basis of metal surface electron emission theory, the change law of electrode surface field with diode voltage is analyzed by finite element method. The experimental system is designed and the research is carried out. The experiment compares the TC4 cathodes’ vacuum breakdown thresholds under different surface roughness(Rz). The experimental results demonstrate that the surface roughness of cathodes is 26.13 ?m, 10.41 ?m, 6.75 ?m, 1.12 ?m and 0.13 ?m; and the breakdown threshold is 306 kV/cm, 345 kV/cm, 358 kV/cm, 392 kV/cm and 428 kV/cm respectively. When the Rz goes from 26.13 ?m to 0.13 ?m, the breakdown threshold is increased by 39%. The metal surface breakdown threshold increases with the decreasing of Rz. Reducing the Rz of metal surface is an effective way to improve the vacuum breakdown threshold.
参考文献

[1] 常超.高功率微波系统中的击穿物理[M]. 北京:中国科学出版社, 2016. (CHANG Chao. Breakdown physics in high power microwave systems[M]. Beijing:Science Press, 2016.)

[2] 闫二艳,孟凡宝,邱风,等. 高功率微波孔缝击穿特性[J]. 太赫兹科学与电子信息学报, 2016,14(5):729-732. (YAN Eryan,MENG Fanbao,QIU Feng,et al. Preliminary analysis on high power microwave breakdown characteristics in slots[J]. Journal of Terahertz Science and Electronic Information Technology, 2016,14(5):729-732.)

[3] 宋志敏,孙钧,曹亦兵,等. 高功率微波源中强场击穿机理探讨[J]. 现代应用物理, 2016,7(1):24-28. (SONG Zhimin,SUN Jun,CAO Yibing,et al. Preliminary studies of intense field breakdown mechanism in high power microwave source[J]. Modern Applied Physics, 2016,7(1):24-28.)

[4] ROZANOVA N,GRANOVSKY V L. On the initiation of electrical breakdown of a high voltage gap[J]. Soviet Physics- Technical Physics, 1956(1):471-478.

[5] BOUCHARD K G. Vacuum breakdown voltages of dispersion-strengthened copper vs oxygen-free,high-conductivity copper[J]. Journal of Vacuum Science and Technology, 1970,7(2):358-360.

[6] SPOLAORE P,BISOFFI G,CERVELLERA F,et al. The large gap case for hv insulation in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997,4(4):389-393.

[7] 米夏兹Γ A. 真空放电物理和高功率脉冲技术[M]. 李国政,译. 北京:国防工业出版社, 2007. (MESYATS Γ A. Vacuum discharge and high power pulse technology[M]. Translated by LI Guozheng. Beijing:National Defence Industy Press, 2007.)

[8] 左应红,王建国,范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响[J]. 物理学报, 2012,61(21):329-335. (ZUO Yinghong,WANG Jianguo,FAN Ruyu. Influence of diode gap distance on space charge effects in field emission[J]. Acta Physica Sinica, 2012,61(21):329-335.)

[9] 左应红. 场致爆炸电子发射的理论分析与数值模拟[R]. 北京:清华大学, 2014. (ZUO Yinghong. Theory analysis and numerical simulation of field-induced explosive electron emission[R]. Beijing:Tsinghua University, 2014.)

[10] ZHANG Yingyao,XU Xinye,JIN Lijun,et al. Fractal-based electric field enhancement modeling of vacuum gap electrodes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017,24(3):1957-1963.

[11] ALMAKSOUR K,KIRKPATRICK M J,ODIC E,et al. Cathode surface morphology effects on field emission: vacuum breakdown creation of field emitters[J]. IEEE Transactions on Plasma Science, 2014,42(10):2582-2583.

[12] 黄子平,何佳龙,陈思富,等. 高压多脉冲真空间隙击穿实验研究[J]. 强激光与粒子束, 2008,20(11):1903-1907. (HUANG Ziping,HE Jialong,CHEN Sifu,et al. Experimental research for vacuum gap breakdown in high voltage multi-pulse[J]. High Power Laser and Particle Beams, 2008,20(11):1903-1907.)

[13] 邱旭东. 微秒脉冲下厘米间隙真空击穿特性研究[R]. 西安:西北核技术研究所, 2016. (QIU Xudong. Investigation into vacuum breakdown characteristics of centimeter-scale gaps under microsecond pulses[R]. Xi'an,China:Northwest Institute of Nuclear Technology, 2016.)

[14] 苏兆锋,杨海亮,张鹏飞,等. 脉冲电场下两种电极材料表面电子发射阈值特性的实验研究[J]. 物理学报, 2014, 63(10):330-335. (SU Zhaofeng,YANG Hailiang,ZHANG Pengfei,et al. Preliminary experimental research of electron emission characteristics on surface area of two kinds of electrodes[J]. Acta Physica Sinica, 2014,63(10):330-335.)

[15] 孙钧,刘国治,林郁正,等. 阴极金属微凸起电场增强因子数值模拟[J]. 强激光与粒子束, 2005,17(8):1183-1186. (SUN Jun,LIU Guozhi,LIN Yuzheng,et al. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005,17(8):1183-1186.)

[16] 俞永波,杨兰兰,屠彦. 电极表面形态对真空击穿特性的影响[J]. 电子器件, 2014,37(3):385-389. (YU Yongbo,YANG Lanlan,TU Yan. Investigation of the electrodes’ surface to vacuum breakdown[J]. Chinese Journal of Electron Devices, 2014,37(3):385-389.)

胡祥刚, 宋玮, 向导, 朱晓欣, 李小泽, 谭维兵, 张立刚, 沈志远, 程攀伦, 宁齐, 梁旭. 金属表面形貌对真空击穿阈值的影响[J]. 太赫兹科学与电子信息学报, 2019, 17(1): 174. 胡祥刚, 宋玮, 向导, 朱晓欣, 李小泽, 谭维兵, 张立刚, 沈志远, 程攀伦, 宁齐, 梁旭. Influence of metal surface morphology on the threshold of vacuum breakdown[J]. Journal of terahertz science and electronic information technology, 2019, 17(1): 174.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!