红外与激光工程, 2018, 47 (1): 0122002, 网络出版: 2018-01-30   

法布里-珀罗薄膜干涉的光纤温度传感器

Optical fiber temperature sensor based on Fabry-Perot coating interference
作者单位
1 武汉东湖学院 电子信息工程学院, 湖北 武汉 430212
2 武汉理工大学 光纤传感技术国家工程实验室, 湖北 武汉 430070
摘要
为了研制结构简单、成本低、可批量生产的微型光纤温度传感器, 分析了薄膜干涉型光纤温度传感器的原理, 选用ZrO2和Al2O3两种介质薄膜材料, 采用TFCalc膜系设计软件设计了薄膜干涉型光纤温度敏感探头的膜系, 由南光ZZS1100-8/G箱式真空镀膜系统采用电子束蒸发技术在普通多模光纤端面蒸镀介质薄膜, 形成法布里-珀罗(Fabry-Perot)薄膜干涉, 并搭建光纤温度传感测试系统, 测试结果表明: 在200~600 ℃范围内, 所设计的干涉型光纤温度传感器的测试光谱随温度变化产生一定的波长漂移, 且波长漂移的温度特性为线性, 线性相关系数为99.7%, 灵敏度为8.37×10-6/℃。基于法布里-珀罗干涉的薄膜型光纤温度传感器体积小, 成本低, 结构紧凑, 可批量生产, 适合安装位置狭小或对传感器集成化要求较高的场合。
Abstract
In order to develop a miniature fiber-optic temperature sensor with simple structure, low cost and mass production, the principle of optical coating interference-based temperature sensor was analyzed. The coating formula of temperature sensing probe was designed by TFCalc formula designing software using ZrO2 and Al2O3 materials. The thin film was deposited on the tip of multimode fiber by using electron-beam evaporation in Nanguang ZZS1100-8/G box type vacuum coating machine. The measurement system of coating interference-based temperature sensor was interrogated. The experimental result shows that the wavelength shift of the fiber-optic temperature sensor is linear in the range of 200-600 ℃, and the correlation coefficient was calculated to be 99.7%, the sensitivity of temperature is 8.37×10-6/℃. The temperature sensor based on Fabry-Perot interference is suitable for mass production with stable performance, accurate point measurement, narrow installation position or higher application requirements for integrated sensor.
参考文献

[1] Jun He, Liao Changrui, Yang Kaiming, et al. High-sensitivity temperature sensor based on a coated single-mode fiber loop[J]. Journal of Lightwave Technology, 2015, 33(19): 4019-4026.

[2] Jinesh Mathew, Oliver Schneller, Dimitrios Polyzos, et al. In-fiber fabry-perot cavity sensor for high-temperature applications[J]. Journal of Lightwave Technology, 2015, 33(12): 2419-2425.

[3] Trung D Vo, He Jiakun, Eric Magi, et al. Chalcogenide fiber-based distributed temperature sensor with sub-centimeter spatial resolution and enhanced accuracy[J]. Optics Express, 2014, 22(2): 1560-1568.

[4] 刘涛, 张文平, 陈慧芳, 等. 卡尔曼滤波在分布式拉曼光纤温度传感系统去噪中的应用[J]. 红外与激光工程, 2014, 43(5): 1643-1647.

    Liu Tao, Zhang Wenping, Chen Huifang, et al. Reduction of system noise in distributed optical fiber Raman temperature sensor by Kalman filter[J]. Infrared and Laser Engineering, 2014, 43(5): 1643-1647. (in Chinese)

[5] 徐宁, 戴明. 分布式光纤温度压力传感器设计[J]. 中国光学, 2015, 8(4): 629-635.

    Xu Ning, Dai Ming. Design of distributed optical fiber sensor for temperature and pressure measurement[J]. Chinese Optics, 2015, 8(4): 629-635. (in Chinese)

[6] Li Yuhua, Yang Minwei, Liao Changrui, et al. Prestressed fiber bragg grating with high temperature stability[J]. IEEE Journal Light-wave Technology, 2011, 29(10): 1555-1559.

[7] 蒋善超, 隋青美, 王静, 等. 流速/温度共采的光纤布拉格光栅涡轮流速传感器[J]. 光学 精密工程, 2014, 22(10): 2611-2616.

    Jiang Shanchao, Sui Qingmei, Wang Jing, et al. FBG turbine flow rate sensor for acquiring flow rate and temperature simultaneously[J]. Optics and Precision Engineering, 2014, 22(10): 2611-2616. (in Chinese)

[8] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学, 2013, 6(3): 306-317.

    Xu Guoquan, Xiong Daiyu. Applications of fiber bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese)

[9] 李立京, 王颖, 杨慧, 等. 超荧光光源温度动态特性的分析及控制[J]. 光学 精密工程, 2014, 22(3): 539-546.

    Li Lijing, Wang Ying, Yang Hui, et al. Control of temperature dynamic characteristics of SFS light source[J]. Optics and Precision Engineering, 2014, 22(3): 539-546. (in Chinese)

[10] Huang Chujia, Lee Dongwen, Dai Jixiang, et al. Fabrication of high-temperture sensor based on dielectric multilayer film on Sapphire fiber tip[J]. Sensors and Actuators, 2015, A232: 99-102.

[11] Lee Dongwen, Tian Zhipeng, Dai Jixiang, et al. Sapphire fiber high-temperature tip sensor with multilayer coating[J]. IEEE Photonics Technology Letters, 2015, 27(7): 741-743.

[12] 王思远, 娄淑琴, 梁生, 等. M-Z 干涉仪型光纤分布式扰动传感系统模式识别方法[J]. 红外与激光工程, 2014, 43(8): 2613-2618.

    Wang Siyuan, Lou Shuqin, Liang Sheng, et al. Pattern recognition method of fiber distributed disturbance sensing system based on M-Z interferometer [J]. Infrared and Laser Engineering, 2014, 43(8): 2613-2618. (in Chinese)

[13] Wang Jiajun, Evan M Lally, Wang Xiaoping, et al. ZrO2 thin-film-based sapphire fiber temperature sensor[J]. Applied Optics, 2012, 51(12): 2129-2134.

[14] Dominik Martin, Matthias Grube, Wenke Weinreich. Macroscopic and microscopic electrical characterizations of high-k ZrO2 and ZrO2/Al2O3/ZrO2 metal-insulator-metal structures[J]. Journal of Vacuum Science & Technology, 2011, B29: 01AC02.

高晓丹, 彭建坤, 吕大娟. 法布里-珀罗薄膜干涉的光纤温度传感器[J]. 红外与激光工程, 2018, 47(1): 0122002. Gao Xiaodan, Peng Jiankun, Lv Dajuan. Optical fiber temperature sensor based on Fabry-Perot coating interference[J]. Infrared and Laser Engineering, 2018, 47(1): 0122002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!