激光与光电子学进展, 2017, 54 (1): 010002, 网络出版: 2017-01-17   

光纤放大网络及其应用研究进展 下载: 717次

Progress of Fiber Amplification Network and Its Application
李宏勋 1,2,*张锐 1
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院研究生部, 北京 100088
引用该论文

李宏勋, 张锐. 光纤放大网络及其应用研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010002.

Li Hongxun, Zhang Rui. Progress of Fiber Amplification Network and Its Application[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010002.

参考文献

[1] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 2015, 54(15): 4640-4645.

[2] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3(1): e3.

[3] Mourou G A, Hulin D, Galvanauskas A. The road to high peak power and high average power lasers: Coherent-amplification-network (CAN)[C]. Superstrong Fields in Plasmas: Third International Conference on Superstrong Fields in Plasmas, 2006, 827(1): 152-163.

[4] Labaune C, Hulin D, Galvanauskas A, et al. On the feasibility of a fiber-based inertial fusion laser driver[J]. Optics Communications, 2008, 281(15): 4075-4080.

[5] Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers:An ultrafast performance evolution[J]. Applied Optics, 2010, 49(25): F71-F78.

[6] Brooks C D, Di Teodoro F. High peak power operation and harmonic generation of a single-polarization, Yb-doped photonic crystal fiber amplifier[J]. Optics Communications, 2007, 280(2): 424-430.

[7] Rser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495-3497.

[8] 张 闯. 国际粒子加速器的前沿[J]. 物理, 2008, 37(5): 289-297.

    Zhang Chuang. Frontiers of particle accelerators in the world[J]. Physics, 2008, 37(5): 289-297.

[9] Tajima T, Brocklesby W S, Mourou G, et al. ICAN: The next laser powerhouse[J]. Optics & Photonics News, 2013, 24(5): 36-43.

[10] Brocklesby W S, Nilsson J, Schreiber T, et al. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses[J]. European Physical Journal Special Topics, 2014, 223(6): 1189-1195.

[11] Mourou G A, Labaune C, Hulin D, et al. New amplifying laser concept for inertial fusion driver[C]. Journal of Physics: Conference Series, 2008, 112(3): 032052.

[12] 黄志华. 高能高功率脉冲光纤激光系统的束靶耦合与传输放大[D]. 北京: 清华大学, 2013.

    Huang Zhihua. The laser coupling and beam evolution of the fiber-based high-energy high-power pulsed laser system[D]. Beijing: Tsinghua University, 2013.

[13] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

[14] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

[15] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 182-187.

[16] 周 军, 何 兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31(9): 0900129.

    Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9): 0900129.

[17] Huang Z M, Liu C L, Li J F, et al. Fiber polarization control based on a fast locating algorithm[J]. Applied Optics, 2013, 52(27): 6663-6668.

[18] 黄智蒙. 光纤激光主动相位与偏振自适应控制技术研究[D]. 绵阳: 中国工程物理研究院, 2014.

    Huang Zhimeng. Research on active phase locking and adaptive polarization control technology of fiber lasers[D]. Mianyang: China Academy of Engineering Physics, 2014.

[19] 杨保来, 王小林, 周 朴, 等. 全光纤结构的光纤环被动锁相相干合成研究[J]. 中国激光, 2014, 41(10): 1005001.

    Yang Baolai, Wang Xiaolin, Zhou Pu, et al. Research of all-fiber laser coherent combing system based on fiber-loop[J]. Chinese J Lasers, 2014, 41(10): 1005001.

[20] 母 杰, 景 峰, 王 逍, 等. 相干合成中基于SPGD算法的平移误差和倾斜误差控制[J]. 中国激光, 2014, 41(6): 0602002.

    Mu Jie, Jing Feng, Wang Xiao, et al. Error control of piston and tilt based on SPGD in coherent beam combination[J]. Chinese J Lasers, 2014, 41(6): 0602002.

[21] 母 杰, 王 逍, 景 峰, 等. 高功率激光装置中波前畸变对相干合成的影响[J]. 中国激光, 2015, 42(6): 0602010.

    Mu Jie, Wang Xiao, Jing Feng, et al. Effect of wavefront distortion on coherent beam combination in high-power laser facilities[J]. Chinese J Lasers, 2015, 42(6): 0602010.

[22] 马鹏飞, 王小林, 粟荣涛, 等. 2 kW级光纤激光相干偏振合成[J]. 强激光与粒子束, 2016, 28(4): 040102.

    Ma Pengfei, Wang Xiaolin, Su Rongtao, et al. Coherent polarization beam combining of fiber lasers to 2 kW power level[J]. High Power Laser and Particle Beams, 2016, 28(4): 040102.

[23] Mourou G A, Fisch N J, Malkin V M, et al. Exawatt-Zettawatt pulse generation and applications[J]. Optics Communications, 2012, 285(5): 720-724.

[24] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[25] Eidam T, Rothhardt J, Stutzki F,et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011,19(1): 255-260.

[26] Cheng M Y, Chang Y C, Galvanauskas A, et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers[J]. Optics Letters, 2005, 30(4): 358-360.

[27] Cheng M Y, Hou K C, Galvanauskas A, et al. High average power generation of single-transverse mode MW-peak power pulses using 80 μm core Yb-doped LMA fibers[C]. Conference on Lasers & Electro-optics & Quantum Electronics & Laser Science Conference, 2006, CThAA: CThAA3.

[28] Stutzki F, Jansen F, Liem A, et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 2012, 37(6): 1073-1075.

[29] Zhang H T, Shen X L, Chen D, et al. High energy and high peak power nanosecond pulses generated by fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2295-2298.

[30] Shen X L, Zhang H T, He H, et al. Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation[J]. Optics Express, 2016, 24(5): 4382-4390.

[31] Du S T, Wang Z W, Wang Z K, et al. All fiber high average power nanosecond laser based on core diameter adjustment[J]. Chinese Optics Letters, 2013, 11(9): 091402.

[32] Xu T, Xu L X, Wang A T, et al. Optimization of beam configuration in laser fusion based on the laser beam pattern[J]. Physics of Plasmas, 2013, 20(12): 122702.

[33] Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92(17): 175003.

[34] Leemans W, Chou W, Uesaka M. White paper of the ICFA-ICUIL joint task force: High power laser technology for accelerators[J]. ICFA Beam Dynamics Newsletter, 2011, 56: 10-87.

[35] 李玉同, 廖国前, 赵 刚, 等. 强激光高能量密度物理的若干进展和展望[J]. 中国科学: 物理学, 力学, 天文学, 2013, 43(7): 795-809.

    Li Yutong, Liao Guoqian, Zhao Gang, et al. Progress and prospects of high energy density physics driven by intense lasers[J]. Science China: Physics, Mechanics and Astronomy, 2013, 43(7): 795-809.

[36] Mourou G, Tajima T, Quinn M N, et al. Are fiber-based lasers the future of accelerators [J]. Nuclear Instrument and Methods in Physics Research, 2014, 740(4): 17-20.

[37] Gales S. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition ratelaser beams[J]. European Physical Journal Special Topics, 2015, 224(13): 2631-2637.

[38] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261.

[39] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. European Physical Journal Special Topics, 2015, 224(13): 2621-2624.

[40] Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. European Physical Journal Special Topics, 2014, 223(6): 979-984.

[41] 周美林, 颜学庆. 激光等离子体加速器的兴起与发展[J]. 物理, 44(5): 281-289.

    Zhou Meilin, Yan Xueqing. The development of a laser plasma accelerator[J]. Physics, 44(5): 281-289.

[42] 张世杰, 段晨阳, 苏 杭. 空间主被动安全威胁及其减缓策略[J]. 指挥与控制学报, 2015, 1(1): 92-98.

    Zhang Shijie, Duan Chenyang, Su Hang. Natural-artificial space security threats and their mitigation strategies[J]. Journal of Command and Control, 2015, 1(1): 92-98.

[43] Soulard R, Quinn M N, Tajima T, et al. ICAN: A novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200.

[44] Schall W O. Laser requirements for the removal of space debris from orbit[C]. Twelfth International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, International Society for Optics and Photonics, 1998: 426-436.

[45] Ebisuzaki T, QuinnM N, Wada S, et al. Demonstration designs for the remediation of space debris from the international space station[J]. Acta Astronautica, 2015, 112: 102-113.

[46] Hora H, Lalousis P, Giuffrida L, et al. Petawatt laser pulses for proton-boron high gain fusion without problem of nuclear radiation[C]. SPIE, 2015, 9515: 951518.

[47] Hora H. Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects[J]. Laser and Particle Beams, 2009, 27(2): 207-222.

[48] Hora H, Lalousis P, Moustaizis S. Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems[J]. Laser and Particle Beams, 2014, 32(1): 63-68.

李宏勋, 张锐. 光纤放大网络及其应用研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010002. Li Hongxun, Zhang Rui. Progress of Fiber Amplification Network and Its Application[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!