激光与光电子学进展, 2017, 54 (1): 010002, 网络出版: 2017-01-17   

光纤放大网络及其应用研究进展 下载: 717次

Progress of Fiber Amplification Network and Its Application
李宏勋 1,2,*张锐 1
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院研究生部, 北京 100088
摘要
激光放大系统通常可分为高峰值功率和高平均功率两大类。近年来出现了越来越多同时需要这两种特性的应用, 即要求系统能输出高峰值功率激光, 能高效、高重复频率的工作, 并具有高能量转化效率。针对不断增长的应用需求, 相干放大网络(ICAN)计划基于啁啾脉冲放大、光纤分束放大和相干合束技术解决了高功率激光脉冲在光纤中的非线性损伤等限制功率提升的关键问题, 在获得更高能量和峰值功率的同时避免了光纤中非线性效应导致的波形畸变, 为突破若干限制高峰值功率、高重复频率脉冲激光系统发展的关键障碍提供了解决途径。光纤放大网络的可定标放大特性为许多新的应用提供了解决方案, 如基于激光的粒子加速器、激光驱动核废料处理、地球轨道碎片清理和激光驱动聚变能等。
Abstract
Generally, laser amplification systems can be divided into two types, high peak power laser systems and high average power laser systems. In recent years, there are more and more applications which need the characteristics of the above two systems at the same time. That is to say, the system is required to be able to output high peak power laser and to work efficiently with high repetition frequency, as well as with high energy conversion efficiency. According to the increasing application demand, the coherent amplification network (ICAN) plan solves the key problems limiting power increase, such as nonlinear damage of high power laser pulse in fiber, based on chirped pulse amplification, fiber beam splitting, fiber amplification and coherent beam combination techniques. The waveform distortion caused by the nonlinear effect in fiber is avoided, while the higher energy and peak power are obtained. It offers a solution to break through some key barriers which limit the development of high peak power, high repetition frequency pulse laser system. The scaling amplification characteristics of fiber amplification network provide solutions for many new applications, such as laser-based particle accelerator, laser-driven spent fuel transmutation, orbital debris removal, laser-driven fusion energy and so on.
参考文献

[1] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 2015, 54(15): 4640-4645.

[2] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3(1): e3.

[3] Mourou G A, Hulin D, Galvanauskas A. The road to high peak power and high average power lasers: Coherent-amplification-network (CAN)[C]. Superstrong Fields in Plasmas: Third International Conference on Superstrong Fields in Plasmas, 2006, 827(1): 152-163.

[4] Labaune C, Hulin D, Galvanauskas A, et al. On the feasibility of a fiber-based inertial fusion laser driver[J]. Optics Communications, 2008, 281(15): 4075-4080.

[5] Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers:An ultrafast performance evolution[J]. Applied Optics, 2010, 49(25): F71-F78.

[6] Brooks C D, Di Teodoro F. High peak power operation and harmonic generation of a single-polarization, Yb-doped photonic crystal fiber amplifier[J]. Optics Communications, 2007, 280(2): 424-430.

[7] Rser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495-3497.

[8] 张 闯. 国际粒子加速器的前沿[J]. 物理, 2008, 37(5): 289-297.

    Zhang Chuang. Frontiers of particle accelerators in the world[J]. Physics, 2008, 37(5): 289-297.

[9] Tajima T, Brocklesby W S, Mourou G, et al. ICAN: The next laser powerhouse[J]. Optics & Photonics News, 2013, 24(5): 36-43.

[10] Brocklesby W S, Nilsson J, Schreiber T, et al. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses[J]. European Physical Journal Special Topics, 2014, 223(6): 1189-1195.

[11] Mourou G A, Labaune C, Hulin D, et al. New amplifying laser concept for inertial fusion driver[C]. Journal of Physics: Conference Series, 2008, 112(3): 032052.

[12] 黄志华. 高能高功率脉冲光纤激光系统的束靶耦合与传输放大[D]. 北京: 清华大学, 2013.

    Huang Zhihua. The laser coupling and beam evolution of the fiber-based high-energy high-power pulsed laser system[D]. Beijing: Tsinghua University, 2013.

[13] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

[14] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

[15] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 182-187.

[16] 周 军, 何 兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31(9): 0900129.

    Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9): 0900129.

[17] Huang Z M, Liu C L, Li J F, et al. Fiber polarization control based on a fast locating algorithm[J]. Applied Optics, 2013, 52(27): 6663-6668.

[18] 黄智蒙. 光纤激光主动相位与偏振自适应控制技术研究[D]. 绵阳: 中国工程物理研究院, 2014.

    Huang Zhimeng. Research on active phase locking and adaptive polarization control technology of fiber lasers[D]. Mianyang: China Academy of Engineering Physics, 2014.

[19] 杨保来, 王小林, 周 朴, 等. 全光纤结构的光纤环被动锁相相干合成研究[J]. 中国激光, 2014, 41(10): 1005001.

    Yang Baolai, Wang Xiaolin, Zhou Pu, et al. Research of all-fiber laser coherent combing system based on fiber-loop[J]. Chinese J Lasers, 2014, 41(10): 1005001.

[20] 母 杰, 景 峰, 王 逍, 等. 相干合成中基于SPGD算法的平移误差和倾斜误差控制[J]. 中国激光, 2014, 41(6): 0602002.

    Mu Jie, Jing Feng, Wang Xiao, et al. Error control of piston and tilt based on SPGD in coherent beam combination[J]. Chinese J Lasers, 2014, 41(6): 0602002.

[21] 母 杰, 王 逍, 景 峰, 等. 高功率激光装置中波前畸变对相干合成的影响[J]. 中国激光, 2015, 42(6): 0602010.

    Mu Jie, Wang Xiao, Jing Feng, et al. Effect of wavefront distortion on coherent beam combination in high-power laser facilities[J]. Chinese J Lasers, 2015, 42(6): 0602010.

[22] 马鹏飞, 王小林, 粟荣涛, 等. 2 kW级光纤激光相干偏振合成[J]. 强激光与粒子束, 2016, 28(4): 040102.

    Ma Pengfei, Wang Xiaolin, Su Rongtao, et al. Coherent polarization beam combining of fiber lasers to 2 kW power level[J]. High Power Laser and Particle Beams, 2016, 28(4): 040102.

[23] Mourou G A, Fisch N J, Malkin V M, et al. Exawatt-Zettawatt pulse generation and applications[J]. Optics Communications, 2012, 285(5): 720-724.

[24] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[25] Eidam T, Rothhardt J, Stutzki F,et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011,19(1): 255-260.

[26] Cheng M Y, Chang Y C, Galvanauskas A, et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers[J]. Optics Letters, 2005, 30(4): 358-360.

[27] Cheng M Y, Hou K C, Galvanauskas A, et al. High average power generation of single-transverse mode MW-peak power pulses using 80 μm core Yb-doped LMA fibers[C]. Conference on Lasers & Electro-optics & Quantum Electronics & Laser Science Conference, 2006, CThAA: CThAA3.

[28] Stutzki F, Jansen F, Liem A, et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 2012, 37(6): 1073-1075.

[29] Zhang H T, Shen X L, Chen D, et al. High energy and high peak power nanosecond pulses generated by fiber amplifier[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2295-2298.

[30] Shen X L, Zhang H T, He H, et al. Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation[J]. Optics Express, 2016, 24(5): 4382-4390.

[31] Du S T, Wang Z W, Wang Z K, et al. All fiber high average power nanosecond laser based on core diameter adjustment[J]. Chinese Optics Letters, 2013, 11(9): 091402.

[32] Xu T, Xu L X, Wang A T, et al. Optimization of beam configuration in laser fusion based on the laser beam pattern[J]. Physics of Plasmas, 2013, 20(12): 122702.

[33] Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92(17): 175003.

[34] Leemans W, Chou W, Uesaka M. White paper of the ICFA-ICUIL joint task force: High power laser technology for accelerators[J]. ICFA Beam Dynamics Newsletter, 2011, 56: 10-87.

[35] 李玉同, 廖国前, 赵 刚, 等. 强激光高能量密度物理的若干进展和展望[J]. 中国科学: 物理学, 力学, 天文学, 2013, 43(7): 795-809.

    Li Yutong, Liao Guoqian, Zhao Gang, et al. Progress and prospects of high energy density physics driven by intense lasers[J]. Science China: Physics, Mechanics and Astronomy, 2013, 43(7): 795-809.

[36] Mourou G, Tajima T, Quinn M N, et al. Are fiber-based lasers the future of accelerators [J]. Nuclear Instrument and Methods in Physics Research, 2014, 740(4): 17-20.

[37] Gales S. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition ratelaser beams[J]. European Physical Journal Special Topics, 2015, 224(13): 2631-2637.

[38] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261.

[39] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. European Physical Journal Special Topics, 2015, 224(13): 2621-2624.

[40] Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. European Physical Journal Special Topics, 2014, 223(6): 979-984.

[41] 周美林, 颜学庆. 激光等离子体加速器的兴起与发展[J]. 物理, 44(5): 281-289.

    Zhou Meilin, Yan Xueqing. The development of a laser plasma accelerator[J]. Physics, 44(5): 281-289.

[42] 张世杰, 段晨阳, 苏 杭. 空间主被动安全威胁及其减缓策略[J]. 指挥与控制学报, 2015, 1(1): 92-98.

    Zhang Shijie, Duan Chenyang, Su Hang. Natural-artificial space security threats and their mitigation strategies[J]. Journal of Command and Control, 2015, 1(1): 92-98.

[43] Soulard R, Quinn M N, Tajima T, et al. ICAN: A novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200.

[44] Schall W O. Laser requirements for the removal of space debris from orbit[C]. Twelfth International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, International Society for Optics and Photonics, 1998: 426-436.

[45] Ebisuzaki T, QuinnM N, Wada S, et al. Demonstration designs for the remediation of space debris from the international space station[J]. Acta Astronautica, 2015, 112: 102-113.

[46] Hora H, Lalousis P, Giuffrida L, et al. Petawatt laser pulses for proton-boron high gain fusion without problem of nuclear radiation[C]. SPIE, 2015, 9515: 951518.

[47] Hora H. Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects[J]. Laser and Particle Beams, 2009, 27(2): 207-222.

[48] Hora H, Lalousis P, Moustaizis S. Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems[J]. Laser and Particle Beams, 2014, 32(1): 63-68.

李宏勋, 张锐. 光纤放大网络及其应用研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010002. Li Hongxun, Zhang Rui. Progress of Fiber Amplification Network and Its Application[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!