激光技术, 2017, 41 (1): 85, 网络出版: 2017-01-17  

可见光波段的矿石多角度反射偏振特性研究

Study on multiangular reflectance polarization characteristics of mineral in visible light waveband
作者单位
1 桂林电子科技大学 电子工程与自动化学院, 桂林 541004
2 桂林电子科技大学 广西自动检测技术与仪器重点实验室, 桂林 541004
3 桂林电子科技大学 广西高校光电信息处理重点实验室, 桂林 541004
摘要
为了研究矿石的多角度偏振反射特性, 采用改变光源入射角和探测角的方法, 测量矿石在可见光波段的反射偏振光谱, 并进行了理论分析和实验验证。结果表明, 矿石的偏振度在可见光波段受波长影响较小, 偏振度大小稳定, 而入射角和探测角对矿石的偏振度光谱影响显著; 随着入射角和探测角的增大, 矿石均表现出先增大后减小的趋势, 最大值出现在布儒斯特角附近; 当入射角和探测角在55°~65°范围变化时, 矿石偏振度差异显著, 其中因组成颗粒较小结晶程度较高的玉髓偏振特性最强, 而非晶质结构的蛋白石偏振特性最弱。该研究利用偏振度对矿石进行鉴别和分类, 具有一定的可实行性, 这为矿石检测提供了新的途径。
Abstract
In order to research multiangular reflectance polarization characteristics of minerals, the reflectance polarization spectrum of minerals in visible light waveband was measured by the method of changing the incident angle and detection angle. After theory analysis and experimental verification, the results show that the degree of polarization (DOP) of minerals is less affected by wavelength in visible light region, and DOP is stable. Incident angle and detection angle have significant influence on polarization spectrum. With the increase of incident angle and detection angle, DOP firstly increases and then decreases. The maximum angle is nearing Brewster angle. DOP of minerals have great differences when incident angle and detection angle vary between 55°and 65°. DOP of chalcedony is significantly higher than the other three minerals. DOP of chalcedony with smaller particles and higher crystallinity is the highest and DOP of opal with amorphous structure is the smallest. The study is feasible and reliable to identify and classify minerals by the degree of polarization and provides new way for minerals detection.
参考文献

[1] CAO K F, WANG Sh L, FANG X, et al. Suppression of lidar dynamic range based on polarizing cell [J]. Laser Technology, 2009, 33(1): 60-62(in Chinese).

[2] SHELL J R Ⅱ. Polarimetric remote sensing in the visible to near infrared [D]. Rochester,USA: Rochester Institute of Technology, 2005:66-208.

[3] THILAK V, VOELZ D G, CREUSERE C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications [J]. Applied Optics, 2007, 46(30): 7527-7536.

[4] GOMES O F M, IGLESIAS J C A, PACIORNIK S, et al. Classification of hematite types in iron ores through circularly polarized light microscopy and image analysis [J]. Minerals Engineering, 2013, 52(10): 191-197.

[5] IGLESIAS J C A, GOMES O F M, PACIORNIK S. Automatic recognition of hematite grains under polarized reflected light microscopy through image analysis [J]. Minerals Engineering, 2011, 24(12): 1264-1270.

[6] ZHAO H, YAN L, ZHAO Y Sh. Study on multi-angle polarized reflectance spectrum of granite [J]. Mineral Petrol, 2004, 24(2):9-13(in Chinese).

[7] ZHAO H, YAN L, ZHAO Y Sh. Multi-angle polarized reflectance spectrum of peridotite [J]. Geology and Prospecting, 2004, 40(2):51-54(in Chinese).

[8] ZHAO H, YAN L, ZHAO Y Sh. Dispatching architecture of public traffic vehicles in intelligent transport systems [J]. Geography and Geo-Information Science, 2003, 19(4):81-83(in Chinese).

[9] ZHAO Y Sh, WU T X, SONG K Sh, et al. Research on quantitative relation between multi-angle polarized reflectance and bi-directional reflectance of peridotite[J]. Mining Research and Development, 2005, 25(3):63-66(in Chinese).

[10] ZHAO N Zh, ZHAO Y Sh, YAN L, et al. Study on comparison of bidirectional specular reflection component and bidirectional diffuse reflection component from granite surfaces [J]. International Journal of Infrared and Millimeter Waves, 2007, 26(4):284-288(in Chinese).

[11] ZHU X, ZHAO H, YE X H, et al. Relationship between spectral reflectance of polarization and refractive index of mineral rock [J]. Remote Sensing Information, 2012, 27(3):67-70(in Chinese).

[12] LIANG T Q. Physical optics [M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010:22-30(in Chinese).

[13] WANG X, ZOU X F, JIN W Q. Study of polarization properties of radiation reflected by roughness objects [J]. Transactions of Beijing Institute of Technology, 2011, 31(11): 1327-1331(in Chinese).

[14] ZHANG Q, SUN X B. A polarization retrieval model of soil moisture and experiment [J]. Geometics and Information Science of Wuhan University, 2011, 36(6): 708-712(in Chinese).

[15] FENG W W, WEI Q N, WANG Sh M, et al. Study of polarized bidirectional reflectance distribution function model for painted surfaces [J]. Acta Optica Sinica, 2008, 28(2): 290-294(in Chinese).

[16] CHEN L, HONG J, QIAO Y L, et al. Accuracy analysis on sort of polarized measurement in remote sensing [J]. Spectroscopy and Spectral Analysis, 2008, 28(10):2384-2387(in Chinese).

[17] CHAMI M. Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance [J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C5):1-13.

叶松, 孙旭霞, 汪杰君, 王新强, 张文涛. 可见光波段的矿石多角度反射偏振特性研究[J]. 激光技术, 2017, 41(1): 85. YE Song, SUN Xuxia, WANG Jiejun, WANG Xinqiang, ZHANG Wentao. Study on multiangular reflectance polarization characteristics of mineral in visible light waveband[J]. Laser Technology, 2017, 41(1): 85.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!