光学学报, 2014, 34 (5): 0528001, 网络出版: 2014-04-25   

自干涉合成孔径激光三维成像雷达原理

Principle of Self-Interferometric Synthetic Aperture Ladar for 3D Imaging
作者单位
中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800
摘要
在直视合成孔径激光成像雷达(SAL)的基础上,提出了一种自干涉的产生三维成像的原理方法。首先对于交轨向正扫描和反扫描的柱面镜进行位置偏置,造成交轨向成像频谱的平移并产生相对线性相延,然后逐一对一对交轨向正扫描和反扫描收集聚焦像进行相干叠加,并由此产生自干涉。自干涉产生的交轨向平展条纹对于目标面的倾斜投射即可产生包含目标高度信息的波痕干涉图,最后通过解包裹算法产生表征目标表面轮廓的等位线图。本方法采用一发一收的雷达结构通过单航过干涉法实现三维成像,结构简单,原理有效,同时具有抗大气、运动平台等相位干扰能力。
Abstract
On the basis of down-looking synthetic aperture ladar (DL-SAL), a kind of self-interferometric SAL for 3D topographic relief imaging is proposed in this paper. Firstly, the forward-scanning and backward-scanning cylinder lenses for imaging along the orthogonal direction of travel are biased in their positions, it thus introduces a shifted spectrum image with a linear phase term. Then pair of a forward-scanning resulted focused image and the next backward-scanning resulted image are coherently added, therefore a self-interference between the two images occurs. The flat fringes from this self-interference can be obliquely projected to a target plane, so that a subtly rippled interferogram containing the target height information can be observed. Finally, by using the unwrapping algorithm, a contour mapping representing the surface profile will be achieved. This SAL including a transmitter and a receiver realites the 3D imaging by a one-pass interferometry. The features are simple in construction and effective in principle. Moreover, the phase errors from the atmospheric turbulence can be automatically compensated.
参考文献

[1] M Bashkansky, R L Lucke, E Funk, et al.. Two-dimensional synthetic aperture imaging in the optical domain [J]. Opt Lett, 2002, 27(22): 1983-1985.

[2] S M Beck, J R Buck, W F Buell, et al.. Synthetic-aperture imaging ladar: laboratory demonstration and signal processing [J]. Appl Opt, 2005, 44(35): 7621-7629.

[3] J Ricklin, M Dierking, S Fuhrer, et al.. Synthetic aperture ladar for tactical imaging [C]. DARPA Strategic Technology Office, 2007.

[4] B Krause, J Buck, C Ryan, et al.. Synthetic aperture ladar flight demonstration [C]. in CLEO: 2011, OSA Technical Digest (Optical Society of America, 2011), paper PDPB7.

[5] 周煜, 许楠, 栾竹, 等. 尺度缩小合成孔径激光雷达的二维成像实验[J]. 光学学报, 2009, 29(7): 2030-2032.

    Zhou Yu, Xu Nan, Luan Zhu, et al.. 2D imaging experiment of a 2D target in a laboratory-scale synthetic aperture imaging ladar [J]. Acta Optica Sinica, 2009, 29(7): 2030-2032.

[6] 刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112.

    Liu Liren, Zhou Yu, Zhi Yanan, et al.. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space [J]. Acta Optica Sinica, 2011, 31(9): 0900112.

[7] Liu Liren. Coherent and incoherent synthetic aperture imaging ladars and laboratory-space experimental demonstrations [Invited] [J]. Appl Opt, 2013, 52(4): 579-599.

[8] C V Jakowatz, D E Wahl, P H Eichel, et al.. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Springer US, 1996.

[9] S Crouch, Z W Barber. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques [J]. Opt Express, 2012, 20(22): 24237-24246.

[10] 刘立人. 直视合成孔径激光成像雷达原理[J]. 光学学报, 2012, 32(9): 0920002.

    Liu Liren. Principle of down-looking synthetic aperture imaging ladar [J]. Acta Optica Sinica, 2012, 32 (9): 0920002.

[11] 刘立人. 合成孔径激光成像雷达的二维傅里叶变换成像算法[J]. 光学学报, 2014, 34(1): 0128001.

    Liu Liren. 2D Fourier-transform imaging algorithm for synthetic aperture imaging ladars [J]. Acta Optica Sinica, 2014, 34(1): 0128001.

刘立人. 自干涉合成孔径激光三维成像雷达原理[J]. 光学学报, 2014, 34(5): 0528001. Liu Liren. Principle of Self-Interferometric Synthetic Aperture Ladar for 3D Imaging[J]. Acta Optica Sinica, 2014, 34(5): 0528001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!